Can low concentration flufenoxuron treatment increase the pathogenicity or production of nucleopolyhedrovirus occlusion bodies in Spodoptera exigua (Hübner) or Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae)?
(English)
DOI:
https://doi.org/10.21829/azm.2023.3912627Palabras clave:
Regulador de crecimiento de insectos, matriz peritrófica, insecticida biológico, cuerpos de oclusión, BaculoviridaeResumen
Nucleopolyhedroviruses (Baculoviridae) are lethal pathogens that naturally infect lepidopteran larvae. The chitin synthesis inhibitor flufenoxuron has been reported to potentiate the insecticidal properties of nucleopolyhedrovirus occlusion bodies (OBs) by degrading the integrity of the peritrophic matrix in lepidopteran larvae. In the present study we examined the effect of flufenoxuron treatment on susceptibility of Spodoptera exigua (Hübner) and Spodoptera frugiperda (JE Smith) fifth instars to their homologous nucleopolyhedroviruses, SeMNPV and SfMNPV, respectively. Preliminary bioassays indicated that a 1 mg/l concentration of flufenoxuron resulted in 6.6 - 13.3% mortality of larvae, which could be used in combination with OB inoculum concentrations of 1.5 × 104 OBs/ml of SeMNPV OBs or 1.3 × 10⁶ OBs/ml of SfMNPV OBs. Treatment of larvae with flufenoxuron did not significantly affect virus-induced mortality of either S. exigua (16.7 - 17.2%) or S. frugiperda (28.9 - 34.4%) and had no significant effect on the mean yield of OBs from virus-killed insects of either species. The identity of both SeMNPV and SfMNPV in experimental insects was confirmed by examination of the restriction endonuclease profiles of each virus. These findings contrast with the results of previous studies in which high concentrations of flufenoxuron (100 mg/l) greatly potentiated virus-induced mortality in the silkworm Bombyx mori L., although insect mortality due to flufenoxuron treatment alone was not reported, for reasons that are unclear. We conclude that flufenoxuron (1 mg/l) failed to potentiate the insecticidal activity of SeMNPV or SfMNPV in their respective hosts.
Descargas
Citas
Arakawa, T. (2002) Promotion of nucleopolyhedrovirus infection in larvae of the silkworm, Bombyx mori (Lepidoptera: Bombycidae) by flufenoxuron. Applied Entomology and Zoology, 37, 7–11. https://doi.org/10.1303/aez.2002.7
Arakawa, T., Sugiyama, M. (2002) Promotion of nucleopolyhedrovirus infection in larvae of the silkworm, Bombyx mori (Lepidoptera: Bombycidae) by an antibiotic, nikkomycin Z. Applied Entomology and Zoology, 37, 393–397. https://doi.org/10.1303/aez.2002.393
Arakawa, T., Furuta, Y., Miyazawa, M., Kato, M. (2002) Flufenoxuron, an insect growth regulator, promotes peroral infection by nucleopolyhedrovirus (BmNPV) budded particles in the silkworm, Bombyx mori L. Journal of Virological Methods, 100(1-2), 141-147. https://doi.org/10.1016/S0166-0934(01)00414-1
Barrientos-Gutiérrez, J. E., Huerta-de la Peña, A., Escobedo-Garrido, J. S., López-Olguín, J. F. (2013) Manejo convencional de Spodoptera exigua en cultivos del municipio de Los Reyes de Juárez, Puebla. Revista Mexicana de Ciencias Agrícolas, 4(8), 1197-1208.
Del Rincón-Castro, M. C., Ibarra, J. E. (2005) Effect of a nuclepolyhedrovirus of Autographa californica expressing the enhancin gene of Trichoplusia ni granulovirus on T. ni larvae. Biocontrol Science and Technology, 15, 701-710. https://doi.org/10.1080/09583150500136105
Erlandson, M. A., Toprak, U. Hegedus, D. D. (2019). Role of the peritrophic matrix in insect-pathogen interactions. Journal of Insect Physiology, 117, 103894. https://doi.org/10.1016/j.jinsphys.2019.103894
Eschen, R., Beale, T., Bonnin, J. M., Constantine, K. L., Duah, S., Finch, E. A., Makale, F., Nunda, W., Ogunmodede, A., Pratt, C. F., Thompson, E. (2021) Towards estimating the economic cost of invasive alien species to African crop and livestock production. CABI Agriculture and Bioscience, 2, 18. https://doi.org/10.1186/s43170-021-00038-7
Escribano, A., Williams, T., Goulson, D., Cave, R. D., Chapman, J. W., Caballero, P. (1999) Selection of a nucleopolyhedrovirus for control of Spodoptera frugiperda (Lepidoptera: Noctuidae): structural, genetic, and biological comparison of four isolates from the Americas. Journal of Economic Entomology, 92, 1079-1085. https://academic.oup.com/jee/article/92/5/1079/2217101
Farrar, R. R. Jr., Shapiro, M. (2005) Control of the diamondback moth (Lepidoptera: Plutellidae) on collard by a nucleopolyhedrovirus with a stilbene-based enhancer and an ultraviolet light protectant. Journal of Entomological Science, 40(3), 280-290. https://doi.org/10.18474/0749-8004-40.3.280
Greenberg, S. M., Sappington, T. W., Legaspi, B. C., Liu, T. X., Sétamou, M. (2001) Feeding and life history of Spodoptera exigua (Lepidoptera: Noctuidae) on different host plants. Annals of the Entomological Society of America, 94, 566–575. https://doi.org/10.1603/0013-8746(2001)094[0566:FALHOS]2.0.CO;2
Grzywacz, D., Moore, S. (2017) Production, formulation, and bioassay of baculoviruses for pest control. pp. 109–124. In: L. A. Lacey (Ed.). Microbial control of insect and mite pests. Academic Press, San Diego, CA. https://doi.org/10.1016/B978-0-12-803527-6.00007-X
Haase, S., Sciocco-Cap, A., Romanowski, V. (2015) Baculovirus insecticides in Latin America: historical overview, current status and future perspectives. Viruses, 7(5), 2230-2267. https://doi.org/10.3390/v7052230
Hafeez, M., Ullah, F., Khan, M. M., Li, X., Zhang, Z., Shah, S., Imran, M., Assiri, M. A., Fernández-Grandon, G. M., Desneux, N., Rehman, M., Fahad, S., Lu, Y. (2022) Metabolic-based insecticide resistance mechanism and ecofriendly approaches for controlling of beet armyworm Spodoptera exigua: a review. Environmental Science and Pollution Research, 29(2), 1746-1762. https://doi.org/10.1007/s11356-021-16974-w
Harrison, R. L., Herniou, E. A., Jehle, J. A., Theilmann, D. A., Burand, J. P., Becnel, J. J., Krell, P. J., Van Oers, M. M., Mowery, J. D., Bauchan, G. et al. (2018) ICTV Virus Taxonomy Profile: Baculoviridae. Journal of General Virology, 99, 1185–1186. https://doi.org/10.1099/jgv.0.001107
Hilliou, F., Chertemps, T., Maïbèche, M., Le Goff, G. (2021) Resistance in the genus Spodoptera: Key insect detoxification genes. Insects, 12(6), 544. https://doi.org/10.3390/insects12060544
Ishimwe, E., Hodgson, J. J., Clem, R. J., Passarelli, A. L. (2015). Reaching the melting point: Degradative enzymes and protease inhibitors involved in baculovirus infection and dissemination. Virology, 479, 637-649. https://doi.org/10.1016/j.virol.2015.01.027
Jamovi (2021) Jamovi Statistical Software v.2.3.25. Available at: https://www.jamovi.org (accessed 10 April, 2023).
Kenis, M., Benelli, G., Biondi, A., Calatayud, P. A., Day, R., Desneux, N., Harrison, R. D., Kriticos, D., Rwomushana, I., van den Berg, J., et al. (2023) Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomologia Generalis, 43, 187-241. https://doi.org/10.1127/entomologia/2022/1659
Kolodny-Hirsch, D. M., Curtis, W., Nelson, J. (1995) Dietary effects of methoprene on Lymantria dispar (Lepidoptera: Lymantriidae) growth and nuclear polyhedrosis virus yield. Journal of Economic Entomology, 88, 825–829. https://doi.org/10.1093/jee/88.4.825
Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., Goettel, M. S. (2015) Insect pathogens as biological control agents: back to the future. Journal of Invertebrate Pathology, 132, 1-41. https://doi.org/10.1016/j.jip.2015.07.009
Lasa, R., Pagola, I., Ibañez, I., Belda, J. E., Williams, T., Caballero, P. (2007a) Efficacy of Spodoptera exigua multiple nucleopolyhedrovirus as a biological insecticide for beet armyworm control in greenhouses of southern Spain. Biocontrol Science and Technology, 17(3), 221–232. https://doi.org/10.1080/09583150701211335
Lasa, R., Ruiz-Portero, C., Alcázar, M. D., Belda, J. E., Caballero, P., Williams, T. (2007b) Efficacy of optical brightener formulations of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) as a biological insecticide in greenhouses in southern Spain. Biological Control, 40(1), 89–96. https://doi.org/10.1016/j.biocontrol.2006.06.015
Lasa, R., Caballero, P., & Williams, T. (2007c) Juvenile hormone analogs greatly increase the production of a nucleopolyhedrovirus. Biological Control, 41(3), 389–396. https://doi.org/10.1016/j.biocontrol.2007.02.012
Martínez, A. M., Simón, O., Williams, T., Caballero, P. (2003) Effect of optical brighteners on the insecticidal activity of a nucleopolyhedrovirus in three instars of Spodoptera frugiperda. Entomologia Experimentalis et Applicata, 109(2), 139-146. https://doi.org/10.1046/j.1570-7458.2003.00100.x
Merzendorfer, H. (2013) Chitin synthesis inhibitors: old molecules and new developments. Insect Science, 20(2), 121-138. https://doi.org/10.1111/j.1744-7917.2012.01535.xhexaflumuron
Mihm, J. A. (1984) Técnicas eficientes para la crianza masiva e infestación de insectos, en la selección de las plantas hospedantes para resistencia al gusano cogollero, Spodoptera frugiperda. Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), El Batán, México.
Moore, S., Jukes, M. (2019) Advances in microbial control in IPM: Entomopathogenic viruses. pp. 593–648. In: M. Kogan, E. A. Heinrichs, (Eds.). Integrated management of insect pests. Burleigh Dodds Science Publishing, Cambridge, United Kingdom. https://doi.org/10.19103/AS.2019.0047.18
Muñoz, D., Martínez, A. M., Murillo, R., Ruiz de Escudero, I., Vilaplana, L. (2001) Técnicas básicas para la caracterización de baculovirus. pp. 95-118. In: P. Caballero, M. López-Ferber, T. Williams, (Eds). Los baculovirus y sus aplicaciones como bioinsecticidas. Phytoma, Valencia, Spain.
Muñoz, D., Murillo, R., Krell, P. J., Vlak, J. M., Caballero, P. (1999) Four genotypic variants of a Spodoptera exigua nucleopolyhedrovirus (Se-SP2) are distinguishable by a hypervariable genomic region. Virus Research, 59(1), 61-74. https://doi.org/10.1016/S0168-1702(98)00125-7
Nordin, G. L. (1981) Dietary effects of methoprene on Autographa californica nuclear polyhedrosis virus yield in Heliothis virescens. Journal of the Kansas Entomological Society, 54, 489–495. https://www.jstor.org/stable/25084183
Paredes-Sánchez, F. A., Rivera, G., Bocanegra-García, V., Martínez-Padrón, H. Y., Berrones-Morales, M., Niño-García, N., Herrera-Mayorga, V. (2021) Advances in control strategies against Spodoptera frugiperda. A review. Molecules, 26(18), 5587. https://doi.org/10.3390/molecules26185587
Pogue, M. (2002) A world revision of the genus Spodoptera Guenée (Lepidoptera: Noctuidae). American Entomological Society, Philadelphia, USA.
Reid, S., Chan, L., van Oers, M. M. (2014) Production of entomopathogenic viruses. pp. 437–482. In: J. A. Morales-Ramos, M. G. Rojas, D. I. Shapiro-Ilan (Eds.). Mass production of beneficial organisms. Elsevier, Amsterdam, Netherlands. https://doi.org/10.1016/B978-0-12-391453-8.00013-3
Ricarte-Bermejo, A., Simón, O., Fernández, A. B., Williams, T., Caballero, P. (2021) Bacmid expression of granulovirus enhancin En3 accumulates in cell soluble fraction to potentiate nucleopolyhedrovirus infection. Viruses, 13(7), 1233. https://doi.org/10.3390/v13071233
Serrão, J. E., Plata-Rueda, A., Martínez, L. C., Zanuncio, J. C. (2022) Side-effects of pesticides on non-target insects in agriculture: A mini-review. The Science of Nature, 109(2), 17. https://doi.org/10.1007/s00114-022-01788-8
Shapiro, M., Robertson, J. L. (1992) Enhancement of gypsy moth (Lepidoptera: Lymantriidae) baculoviruses activity by optical brighteners. Journal of Economic Entomology, 85, 1120–1124. https://doi.org/10.1093/jee/85.4.1120
Simón, O., Palma, L., Beperet, I., Muñoz, D., López-Ferber, M., Caballero, P., Williams, T. (2011) Sequence comparison between three geographically distinct Spodoptera frugiperda multiple nucleopolyhedrovirus isolates: detecting positively selected genes. Journal of Invertebrate Pathology, 107, 33-42. https://doi.org/10.1016/j.jip.2011.01.002
Sun, X. (2015) History and current status of development and use of viral insecticides in China. Viruses, 7(1), 306-319. https://doi.org/10.3390/v7010306.
Tay, W. T., Meagher Jr, R. L., Czepak, C., Groot, A. T. (2023) Spodoptera frugiperda: ecology, evolution, and management options of an invasive species. Annual Review of Entomology, 68, 299-317. https://doi.org/10.1146/annurev-ento-120220-102548
Toprak, U., Susurluk, H., Oktay Gürkan, M. (2007) Viral-enhancing activity of an optical brightener for Spodoptera littoralis (Lepidoptera: Noctuidae) nucleopolyhedrovirus. Biocontrol Science and Technology, 17(4), 423-431. https://doi.org/10.1080/09583150701213737
Wang, P., Granados, R. R. (2000) Calcofluor disrupts the midgut defense systems in insects. Insect Biochemisty and Molecular Biology, 30, 135–143. https://doi.org/10.1016/S0965-1748(99)00108-3
Washburn, J. O., Kirkpatrick, B. A., Haas-Stapleton, E., Volkman, L. E. (1998) Evidence that the stilbene-derived optical brightener M2R enhances Autographa californica M nucleopolyhedrovirus infection of Trichoplusia ni and Heliothis virescens by preventing sloughing of infected midgut epithelial cells. Biological Control, 11(1), 58-69. https://doi.org/10.1006/bcon.1997.0572
Williams, T. (2018) Viruses. pp. 215–285. In: A. E. Hajek, D. I. Shapiro-Ilan (Eds.). Ecology of invertebrate diseases. Wiley, Chichester, UK. https://doi.org/10.1002/9781119256106.ch7
Yang, S., Zhao, L., Ma, R., Fang, W., Hu, J., Lei, C., Sun, X. (2017) Improving baculovirus infectivity by efficiently embedding enhancing factors into occlusion bodies. Applied and Environmental Microbiology, 83(14), e00595-17. https://doi.org/10.1128/AEM.00595-17
Publicado
Cómo citar
-
Resumen531
-
PDF 102
-
XML5
Número
Sección
Licencia
Derechos de autor 2023 ACTA ZOOLÓGICA MEXICANA (N.S.)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Acta Zoológica Mexicana (nueva serie) por Instituto de Ecología, A.C. se distribuye bajo una
Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional