Publicado 2022-07-25
Palabras clave
- Pulgón de la col
- ARNi
- Brassica
- plaga
- áfidos
- insulina
Cómo citar
Derechos de autor 2022

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Resumen
La supresión de moléculas de ácido ribonucleico mensajero (ARNm) mediante ARN interferente (ARNi) se ha propuesto como método de control de insectos plagas. El ARNi impide el desarrollo morfológico y funcional de los insectos y se considera altamente específico. En este estudio se buscaron receptores de insulina (InR) en Brevicoryne brassicae L. (Hemiptera: Aphididae) a partir del ARNm de pulgones, como primer paso para el diseño posterior de ARNi dirigido a la supresión de InR. A partir del ácido desoxirribonucleico complementario (ADNc) y mediante PCR anidada, se amplificó la región correspondiente a InR con dos pares de cebadores diseñados para Nilaparvata lugens (Homoptera: Delphacidae). No se logró identificar InR, en su lugar se predice la presencia de la proteína receptora Dip2A de unión a folistatina (FS) debido a que comparten regiones proteicas similares con los InR, involucradas en la traducción de señales en los insectos. Se sugiere continuar con la búsqueda de InR específicos para el pulgón, así como posibles cebadores para regiones de Dip2A, para lograr un ARNi altamente específico.
Citas
- Altschul, S., Madden, T., Schäffer, A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25 (17), 3389–3402. https://doi.org/10.1093/nar/25.17.3389
- Azevedo, S. V., Hartfelder, K. (2008) The insulin signaling pathway in honey bee (Apis mellifera) caste development-differential expression of insulin-like peptides and insulin receptors in queen and worker larvae. Journal of Insect Physiology, 54 (6), 1064–1071. https://doi.org/10.1016/j.jinsphys.2008.04.009
- Blackman, R. L., Eastop, V. F. (2000) Aphids on the world’s crops, an identification and information guide. Second Edition, Wiley, Chichester, England, 251 pp.
- Christiaens, O., Whyard, S., Vélez, A. M., Smagghe, G. (2020) Double-stranded RNA technology to control insect pests: current status and challenges. Frontiers in Plant Science, 11 (451), 1–10. https://doi.org/10.3389/fpls.2020.00451
- Cooper, A. M. W., Silver, K., Zhang, J., Park, Y., Zhu, K. Y. (2019) Molecular mechanisms influencing efficiency of RNA interference in insects. Pest Management Science, 75, 18–28. https://doi.org/10.1002/ps.5126
- Darrington, M., Dalmay, T., Morrison, N. I., Chapman, T. (2017) Implementing the sterile insect technique with RNA interference–a review. Entomologia Experimentalis et Applicata, 164 (3), 1–21. https://doi.org/10.1111/eea.12575
- Defferrari, M. S., Da Silva, S. R., Orchard, I., Lange, A. B. (2018) A Rhodnius prolixus insulin receptor and its conserved intracellular signaling pathway and regulation of metabolism. Frontiers in Endocrinology, 9 (745), 1–17. https://doi.org/10.3389/fendo.2018.00745
- Ding, B. Y., Shang, F., Zhang, Q., Xiong, Y., Yang, Q., Niu, J. Z., Smagghe, G., Wang, J. J. (2017) Silencing of two insulin receptor genes disrupts nymph-adult transition of alate brown citrus aphid. International Journal of Molecular Sciences, 18 (2), 2–14. https://doi.org/10.3390/ijms18020357
- Dinkova, T. D., Sánchez de Jiménez, E. (2010) The ribosome: what we learned from its structure. Educación Química, 21 (1), 93–95. https://doi.org/10.1016/S0187-893X(18)30079-X
- Duvaud, S., Gabella, C., Lisacek, F., Stockinger, H., Ioannidis, V., Durinx, C. (2021) Expasy, the Swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Research, 49, 216–227. https://doi.org/10.1093/nar/gkab225
- Edgar, R. C. (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32 (5), 1792–1797. https://doi.org/10.1093/nar/gkh340
- Garofalo, R. S. (2002) Genetic analysis of insulin signaling in Drosophila. Trends in Endocrinology and Metabolism, 13 (4), 156–162. https://doi.org/10.1016/S1043-2760(01)00548-3
- Guan, R. B., Li, H. C., Miao, X. X. (2018) Prediction of effective RNA interference targets and pathway-related genes in lepidopteran insects by RNA sequencing analysis. Insect Science, 25, 356–367. https://doi.org/10.1111/1744-7917.12437
- Hall, T. (2011) BioEdit: An important software for molecular biology. GERF Bulletin of Biosciences, 2 (1), 60–61.
- Han, J. E., Kathy, F. J., Tang, J. H. K. (2018) Use of beta-tubulin gene for phylogenetic analysis of the microsporidian parasite Enterocytozoon hepatopenaei (EHP) and development of a nested PCR as its diagnostic tool. Aquaculture, 495, 899–902. https://doi.org/10.1016/j.aquaculture.2018.06.059
- Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., Hallwachs, W. (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101 (41), 14812–14817. https://doi.org/10.1073/pnas.0406166101
- Hernández, A., Martín, P., Torres, A., Salido, E. (1994) Análisis del RNA: Estudio de la expresión génica. Nefrología, 14 (2), 145–162.
- Horton, P., Park, K. J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., Nakai, K. (2007) WoLF PSORT: Protein localization predictor. Nucleic Acids Research, 35, 585–587. https://doi.org/10.1093/nar/gkm259
- Ishimaru, Y., Tomonari, S., Matsuoka, Y., Watanabe, T., Miyawaki, K., Bando, T., Tomioka, K. Ohuchi, H., Noji, S., Mito, T. (2016) TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 113 (20), 5634–5639. https://doi.org/10.1073/pnas.1600612113
- Jensen, M., De Meyts, P. (2009) Molecular mechanisms of differential intracellular signaling from the insulin receptor. Vitamins and Hormones, 80, 51–75. https://doi.org/10.1016/S0083-6729(08)00603-1
- Joga, M. R., Zotti, M. J., Smagghe, G., Christiaens, O. (2016) RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: What we know so far. Frontiers in Physiology, 7 (553), 1–14. https://doi.org/10.3389/fphys.2016.00553
- Koo, J., Chereddy, S. C., Palli, S. R. (2020) RNA interference-mediated control of cigarette beetle, Lasioderma serricorne. Archives of Insect Biochemistry and Physiology, 104 (4), 1–11. https://doi.org/10.1002/arch.21680
- Leal-Aguilar, K., Ruiz-Montoya, L., Perales, H., Morales, H. (2008) Phenotypic plasticity of Brevicoryne brassicae in responses to nutritional quality of two related host plants. Ecological Entomology, 33, 735–741. https://doi.1111/j.1365-2311.2008.0103.x
- Lin, X., Xu, Y., Jiang, J., Lavine, M., Lavine, L. C. (2018) Host quality induces phenotypic plasticity in a wing polyphenic insect. Proceedings of the National Academy of Sciences of the United States of America, 115 (29), 7563–7568. https://doi.org/10.1073/pnas.1721473115
- Liu, Y. K., Luo, Y. J., Deng, Y. M., Li, Y., Pang, X. Q., Xu, C. D., Wang, S. G., Tang, B. (2020) Insulin receptors regulate the fecundity of Nilaparvata lugens (Stål). Journal of Asia-Pacific Entomology, 23 (4), 1151–1159. https://doi.org/10.1016/j.aspen.20200.09.011
- Luan, J. B., Ghanim, M., Liu, S. S., Czosnek, H. (2013). Silencing the ecdysone synthesis and signaling pathway genes disrupts nymphal development in the whitefly. Insect Biochemistry and Molecular Biology, 43 (8), 740–746. https://doi.org/10.1016/j.ibmb.2013.05.012
- Mamta, B., Rajam, M. V. (2017) RNAi technology: a new platform for crop pest control. Physiology and Molecular Biology of Plants, 23 (3), 487–501. https://doi.org/10.1007/s12298-017-0443-x
- Nandety, R. S., Kuo, Y-W., Nouri, S., Falk, B. W. (2015) Emerging strategies for RNA interference (RNAi) applications in insects. Bioengineered, 6 (1), 8–19. https://doi.org/10.4161/21655979.2014.979701
- Nässel, D. R., Broeck, J. V. (2016) Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides. Cellular and Molecular Life Sciences, 73, 271–290. https://doi.org/10.1007/s00018-015-2063-3
- Nicholson, S. J., Nickerson, M. L., Dean, M., Song, Y., Hoyt, R. P., Rhee, H., Kim, C., Puterka, G. J. (2015) The genome of Diuraphis noxia, a global aphid pest of small grains. BMC Genomics, 16 (429), 1–16. https://dx.doi.org/10.1186/s12864-015-1525-1
- Noller, H. F. (2005) RNA structure: Reading the ribosome. Science, 309 (5740), 1508–1514. https://doi.org/10.1126/science.1111771
- Núñez, F. J., Fornoni, J., Ruiz, M. L., Valverde, P. L. (2003) La evolución de la plasticidad fenotípica. Revista Especializada en Ciencias Químico-Biológicas, 6 (1), 16–24.
- Olivares, J. A., Arellano, A. (2008) Bases moleculares de las acciones de la insulina. Revista de Educación Bioquímica, 27 (1), 9–18. Disponible en: https://www.medigraphic.com/pdfs/revedubio/reb-2008/reb081c.pdf (consultado el 5 marzo 2022).
- Ouchi, N., Asaumi, Y., Ohashi, K., Higuchi, A., Sono-Romanelli, S., Oshima, Y., Walsh, K. (2010) DIP2A functions as a FSTL1 receptor. Journal of Biological Chemistry, 285 (10), 7127–7134. https://dx.doi.org/10.1074/jbc.M109.069468
- Ponting, C. P. (1997) Evidence for PDZ domains in bacteria, yeast, and plants. Protein Science, 6, 464–468. https://doi.org/10.1002/pro.5560060225
- Restrepo, J., Ortiz, L., Cardona, X., Olivera, M. (2012) Evaluación de la sensibilidad y especificidad del diagnóstico molecular del Staphylococcus aureus en leche de vacas afectadas por mastitis. Biosalud, 11 (2), 40–51. Disponible en: http://www.scielo.org.co/pdf/biosa/v11n2/v11n2a05.pdf (consultado el 3 junio 2022).
- Ruíz, J. A., Bravo, M. E., Ramírez, O. G., Báez, G. A. D., Álvarez, C. M., Ramos, G. J. L., Nava, C. U. Byerly, M. K. F. (2013) Plagas de importancia económica en México: aspectos de su biología y ecología. Libro Técnico Núm. 2. INIFAP-CIRPAC-Campo Experimental Centro Altos de Jalisco. Tepatitlán de Morelos, Jalisco, 447 pp.
- Ruíz-Montoya, L., Núñez, F. J. (2013) Testing local host adaptation and phenotypic plasticity in a herbivore when alternative related host plants occur sympatrically. PLoS ONE, 8 (11), 1–9. https://doi.org/10.1371/journal.pone.0079070
- Saitou, N., Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4 (4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
- Sandhi, R. K., Reddy, G. V. P. (2020) Biology, ecology, and management strategies for pea aphid (Hemiptera: Aphididae) in pulse crops. Journal of Integrated Pest Management, 11 (1), 1–20. https://doi.org/10.1093/jipm/pmaa016
- Santiago-Lastra, J. A., Perales-Rivera, H. R. (2007) Producción campesina con alto uso de insumos industriales: El cultivo de repollo (Brassica oleracea var. Capitata) en Los Altos de Chiapas. Ra Ximhai, 3 (2), 481–507. https://doi.org/10.35197/rx.03.03.2007.03.js
- Shan-Shan, G., Meng, Z., Tong-Xian, L. (2016) Insulin-related peptide 5 is involved in regulating embryo development and biochemical composition in pea aphid with wing polyphenism. Frontiers in Physiology, 7 (31), 1–13. https://doi.org/10.3389/fphys.2016.00031
- Smykal, V., Pivarci, M., Provaznik, J., Bazalova, O., Jedlicka. P., Luksan, O., Horak, A., Vaneckova, H., Benes, V., Fiala, I., Hanus, R., Dolezel, D. (2020) Complex evolution of insect insulin receptors and homologous decoy receptors, and functional significance of their multiplicity. Molecular Biology and Evolution, 37 (6), 1775–1789. https://doi.org/10.1093/molbev/msaa048
- Tanaka, M., Murakami, K., Ozaki, S., Imura, Y., Tong, X. P., Watanabe, T., Sawaki, T., Kawanami, T., Kawabata, D., Fujii, T., Usui, T., Masaki, Y., Fukushima, T., Jin, Z. X., Umehara, H., Mimori, T. (2010) DIP2 disco-interacting protein 2 homolog A (Drosophila ) is a candidate receptor for follistatin-related proteinfollistatin-like 1 - Analysis of their binding with TGF-β superfamily proteins. FEBS Journal, 277, 4278–4289. https://doi.org/10.1111/j.1742-4658.2010.07816.x
- Vázquez-Jiménez, J. G., Roura-Guiberna, A., Jiménez-Mena, L. R., Olivares-Reyes, J. A. (2017) El papel de los ácidos grasos libres en la resistencia a la insulina. Gaceta Médica de México, 153, 852–863. https://doi.org/10.24875/GMM.17002714
- Xu, H-J., Xue, J., Lu, B., Zhang, X-C., Zhuo, J-C., He, S-F., Ma, X-F., Jiang, Y-Q., Fan, H-W., Xu, J-Y., Ye, Y. X., Pan, P. L., Li, Q., Bao, Y. Y., Nijhout, H. F., Zhang, C. X. (2015) Two insulin receptors determine alternative wing morphs in planthoppers. Nature, 519, 464–467. https://doi.org/10.1038/nature14286
- Yusupova, G. Z., Yusupov, M. M., Cate, J. H. D., Noller, H. F. (2001) The path of messenger RNA through the ribosome. Cell, 106, 233–241. https://doi.org/10.1016/S0092-8674(01)00435-4
- Zhao, Y., Huang, G., Zhang, W. (2019) Mutations in NlInR1 affect normal growth and lifespan in the brown planthopper Nilaparvata lugens. Insect Biochemistry and Molecular Biology, 115, 103–246. https://doi.org/10.1016/j.ibmb.2019.103246