Vol. 38 (2022)
Artículos originales

Bioprospección de receptores de insulina a partir de ARN mensajero en Brevicoryne brassicae L. (Hemiptera: Aphididae)

Hever Cruz-Méndez
Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur; Unidad San Cristóbal de Las Casas; Periférico Sur s/n, María Auxiliadora, C.P. 29290 San Cristóbal de Las Casas, Chiapas. (L. R-M) 967 674 9000 (ext. 1316), (H. C-M) 9671304317.
Elia Diego-García
CONACyT-El Colegio de la Frontera Sur; Unidad Tapachula; Carretera Antiguo Aeropuerto Km. 2.5, C.P. 30700 Tapachula, Chiapas. (E. D-G) 962 628 9800 (ext. 5458).
Pablo Liedo
Departamento de Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur; Unidad Tapachula; Carretera Antiguo Aeropuerto Km. 2.5, C.P. 30700 Tapachula, Chiapas. (P. L.) 962 628 9800 (ext. 5471).
Lorena Ruiz-Montoya
Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur; Unidad San Cristóbal de Las Casas; Periférico Sur s/n, María Auxiliadora, C.P. 29290 San Cristóbal de Las Casas, Chiapas. (L. R-M) 967 674 9000 (ext. 1316), (H. C-M) 9671304317.

Publicado 2022-07-25

Palabras clave

  • Pulgón de la col
  • ARNi
  • Brassica
  • plaga
  • áfidos
  • insulina

Cómo citar

Cruz-Méndez, H., Diego-García, E., Liedo, P., & Ruiz-Montoya, L. (2022). Bioprospección de receptores de insulina a partir de ARN mensajero en Brevicoryne brassicae L. (Hemiptera: Aphididae). ACTA ZOOLÓGICA MEXICANA (N.S.), 38(1), 1-18. https://doi.org/10.21829/azm.2022.3812513

Resumen

La supresión de moléculas de ácido ribonucleico mensajero (ARNm) mediante ARN interferente (ARNi) se ha propuesto como método de control de insectos plagas. El ARNi impide el desarrollo morfológico y funcional de los insectos y se considera altamente específico. En este estudio se buscaron receptores de insulina (InR) en Brevicoryne brassicae L. (Hemiptera: Aphididae) a partir del ARNm de pulgones, como primer paso para el diseño posterior de ARNi dirigido a la supresión de InR. A partir del ácido desoxirribonucleico complementario (ADNc) y mediante PCR anidada, se amplificó la región correspondiente a InR con dos pares de cebadores diseñados para Nilaparvata lugens (Homoptera: Delphacidae). No se logró identificar InR, en su lugar se predice la presencia de la proteína receptora Dip2A de unión a folistatina (FS) debido a que comparten regiones proteicas similares con los InR, involucradas en la traducción de señales en los insectos. Se sugiere continuar con la búsqueda de InR específicos para el pulgón, así como posibles cebadores para regiones de Dip2A, para lograr un ARNi altamente específico.

Citas

  1. Altschul, S., Madden, T., Schäffer, A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25 (17), 3389–3402. https://doi.org/10.1093/nar/25.17.3389
  2. Azevedo, S. V., Hartfelder, K. (2008) The insulin signaling pathway in honey bee (Apis mellifera) caste development-differential expression of insulin-like peptides and insulin receptors in queen and worker larvae. Journal of Insect Physiology, 54 (6), 1064–1071. https://doi.org/10.1016/j.jinsphys.2008.04.009
  3. Blackman, R. L., Eastop, V. F. (2000) Aphids on the world’s crops, an identification and information guide. Second Edition, Wiley, Chichester, England, 251 pp.
  4. Christiaens, O., Whyard, S., Vélez, A. M., Smagghe, G. (2020) Double-stranded RNA technology to control insect pests: current status and challenges. Frontiers in Plant Science, 11 (451), 1–10. https://doi.org/10.3389/fpls.2020.00451
  5. Cooper, A. M. W., Silver, K., Zhang, J., Park, Y., Zhu, K. Y. (2019) Molecular mechanisms influencing efficiency of RNA interference in insects. Pest Management Science, 75, 18–28. https://doi.org/10.1002/ps.5126
  6. Darrington, M., Dalmay, T., Morrison, N. I., Chapman, T. (2017) Implementing the sterile insect technique with RNA interference–a review. Entomologia Experimentalis et Applicata, 164 (3), 1–21. https://doi.org/10.1111/eea.12575
  7. Defferrari, M. S., Da Silva, S. R., Orchard, I., Lange, A. B. (2018) A Rhodnius prolixus insulin receptor and its conserved intracellular signaling pathway and regulation of metabolism. Frontiers in Endocrinology, 9 (745), 1–17. https://doi.org/10.3389/fendo.2018.00745
  8. Ding, B. Y., Shang, F., Zhang, Q., Xiong, Y., Yang, Q., Niu, J. Z., Smagghe, G., Wang, J. J. (2017) Silencing of two insulin receptor genes disrupts nymph-adult transition of alate brown citrus aphid. International Journal of Molecular Sciences, 18 (2), 2–14. https://doi.org/10.3390/ijms18020357
  9. Dinkova, T. D., Sánchez de Jiménez, E. (2010) The ribosome: what we learned from its structure. Educación Química, 21 (1), 93–95. https://doi.org/10.1016/S0187-893X(18)30079-X
  10. Duvaud, S., Gabella, C., Lisacek, F., Stockinger, H., Ioannidis, V., Durinx, C. (2021) Expasy, the Swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Research, 49, 216–227. https://doi.org/10.1093/nar/gkab225
  11. Edgar, R. C. (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32 (5), 1792–1797. https://doi.org/10.1093/nar/gkh340
  12. Garofalo, R. S. (2002) Genetic analysis of insulin signaling in Drosophila. Trends in Endocrinology and Metabolism, 13 (4), 156–162. https://doi.org/10.1016/S1043-2760(01)00548-3
  13. Guan, R. B., Li, H. C., Miao, X. X. (2018) Prediction of effective RNA interference targets and pathway-related genes in lepidopteran insects by RNA sequencing analysis. Insect Science, 25, 356–367. https://doi.org/10.1111/1744-7917.12437
  14. Hall, T. (2011) BioEdit: An important software for molecular biology. GERF Bulletin of Biosciences, 2 (1), 60–61.
  15. Han, J. E., Kathy, F. J., Tang, J. H. K. (2018) Use of beta-tubulin gene for phylogenetic analysis of the microsporidian parasite Enterocytozoon hepatopenaei (EHP) and development of a nested PCR as its diagnostic tool. Aquaculture, 495, 899–902. https://doi.org/10.1016/j.aquaculture.2018.06.059
  16. Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., Hallwachs, W. (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101 (41), 14812–14817. https://doi.org/10.1073/pnas.0406166101
  17. Hernández, A., Martín, P., Torres, A., Salido, E. (1994) Análisis del RNA: Estudio de la expresión génica. Nefrología, 14 (2), 145–162.
  18. Horton, P., Park, K. J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., Nakai, K. (2007) WoLF PSORT: Protein localization predictor. Nucleic Acids Research, 35, 585–587. https://doi.org/10.1093/nar/gkm259
  19. Ishimaru, Y., Tomonari, S., Matsuoka, Y., Watanabe, T., Miyawaki, K., Bando, T., Tomioka, K. Ohuchi, H., Noji, S., Mito, T. (2016) TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 113 (20), 5634–5639. https://doi.org/10.1073/pnas.1600612113
  20. Jensen, M., De Meyts, P. (2009) Molecular mechanisms of differential intracellular signaling from the insulin receptor. Vitamins and Hormones, 80, 51–75. https://doi.org/10.1016/S0083-6729(08)00603-1
  21. Joga, M. R., Zotti, M. J., Smagghe, G., Christiaens, O. (2016) RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: What we know so far. Frontiers in Physiology, 7 (553), 1–14. https://doi.org/10.3389/fphys.2016.00553
  22. Koo, J., Chereddy, S. C., Palli, S. R. (2020) RNA interference-mediated control of cigarette beetle, Lasioderma serricorne. Archives of Insect Biochemistry and Physiology, 104 (4), 1–11. https://doi.org/10.1002/arch.21680
  23. Leal-Aguilar, K., Ruiz-Montoya, L., Perales, H., Morales, H. (2008) Phenotypic plasticity of Brevicoryne brassicae in responses to nutritional quality of two related host plants. Ecological Entomology, 33, 735–741. https://doi.1111/j.1365-2311.2008.0103.x
  24. Lin, X., Xu, Y., Jiang, J., Lavine, M., Lavine, L. C. (2018) Host quality induces phenotypic plasticity in a wing polyphenic insect. Proceedings of the National Academy of Sciences of the United States of America, 115 (29), 7563–7568. https://doi.org/10.1073/pnas.1721473115
  25. Liu, Y. K., Luo, Y. J., Deng, Y. M., Li, Y., Pang, X. Q., Xu, C. D., Wang, S. G., Tang, B. (2020) Insulin receptors regulate the fecundity of Nilaparvata lugens (Stål). Journal of Asia-Pacific Entomology, 23 (4), 1151–1159. https://doi.org/10.1016/j.aspen.20200.09.011
  26. Luan, J. B., Ghanim, M., Liu, S. S., Czosnek, H. (2013). Silencing the ecdysone synthesis and signaling pathway genes disrupts nymphal development in the whitefly. Insect Biochemistry and Molecular Biology, 43 (8), 740–746. https://doi.org/10.1016/j.ibmb.2013.05.012
  27. Mamta, B., Rajam, M. V. (2017) RNAi technology: a new platform for crop pest control. Physiology and Molecular Biology of Plants, 23 (3), 487–501. https://doi.org/10.1007/s12298-017-0443-x
  28. Nandety, R. S., Kuo, Y-W., Nouri, S., Falk, B. W. (2015) Emerging strategies for RNA interference (RNAi) applications in insects. Bioengineered, 6 (1), 8–19. https://doi.org/10.4161/21655979.2014.979701
  29. Nässel, D. R., Broeck, J. V. (2016) Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides. Cellular and Molecular Life Sciences, 73, 271–290. https://doi.org/10.1007/s00018-015-2063-3
  30. Nicholson, S. J., Nickerson, M. L., Dean, M., Song, Y., Hoyt, R. P., Rhee, H., Kim, C., Puterka, G. J. (2015) The genome of Diuraphis noxia, a global aphid pest of small grains. BMC Genomics, 16 (429), 1–16. https://dx.doi.org/10.1186/s12864-015-1525-1
  31. Noller, H. F. (2005) RNA structure: Reading the ribosome. Science, 309 (5740), 1508–1514. https://doi.org/10.1126/science.1111771
  32. Núñez, F. J., Fornoni, J., Ruiz, M. L., Valverde, P. L. (2003) La evolución de la plasticidad fenotípica. Revista Especializada en Ciencias Químico-Biológicas, 6 (1), 16–24.
  33. Olivares, J. A., Arellano, A. (2008) Bases moleculares de las acciones de la insulina. Revista de Educación Bioquímica, 27 (1), 9–18. Disponible en: https://www.medigraphic.com/pdfs/revedubio/reb-2008/reb081c.pdf (consultado el 5 marzo 2022).
  34. Ouchi, N., Asaumi, Y., Ohashi, K., Higuchi, A., Sono-Romanelli, S., Oshima, Y., Walsh, K. (2010) DIP2A functions as a FSTL1 receptor. Journal of Biological Chemistry, 285 (10), 7127–7134. https://dx.doi.org/10.1074/jbc.M109.069468
  35. Ponting, C. P. (1997) Evidence for PDZ domains in bacteria, yeast, and plants. Protein Science, 6, 464–468. https://doi.org/10.1002/pro.5560060225
  36. Restrepo, J., Ortiz, L., Cardona, X., Olivera, M. (2012) Evaluación de la sensibilidad y especificidad del diagnóstico molecular del Staphylococcus aureus en leche de vacas afectadas por mastitis. Biosalud, 11 (2), 40–51. Disponible en: http://www.scielo.org.co/pdf/biosa/v11n2/v11n2a05.pdf (consultado el 3 junio 2022).
  37. Ruíz, J. A., Bravo, M. E., Ramírez, O. G., Báez, G. A. D., Álvarez, C. M., Ramos, G. J. L., Nava, C. U. Byerly, M. K. F. (2013) Plagas de importancia económica en México: aspectos de su biología y ecología. Libro Técnico Núm. 2. INIFAP-CIRPAC-Campo Experimental Centro Altos de Jalisco. Tepatitlán de Morelos, Jalisco, 447 pp.
  38. Ruíz-Montoya, L., Núñez, F. J. (2013) Testing local host adaptation and phenotypic plasticity in a herbivore when alternative related host plants occur sympatrically. PLoS ONE, 8 (11), 1–9. https://doi.org/10.1371/journal.pone.0079070
  39. Saitou, N., Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4 (4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  40. Sandhi, R. K., Reddy, G. V. P. (2020) Biology, ecology, and management strategies for pea aphid (Hemiptera: Aphididae) in pulse crops. Journal of Integrated Pest Management, 11 (1), 1–20. https://doi.org/10.1093/jipm/pmaa016
  41. Santiago-Lastra, J. A., Perales-Rivera, H. R. (2007) Producción campesina con alto uso de insumos industriales: El cultivo de repollo (Brassica oleracea var. Capitata) en Los Altos de Chiapas. Ra Ximhai, 3 (2), 481–507. https://doi.org/10.35197/rx.03.03.2007.03.js
  42. Shan-Shan, G., Meng, Z., Tong-Xian, L. (2016) Insulin-related peptide 5 is involved in regulating embryo development and biochemical composition in pea aphid with wing polyphenism. Frontiers in Physiology, 7 (31), 1–13. https://doi.org/10.3389/fphys.2016.00031
  43. Smykal, V., Pivarci, M., Provaznik, J., Bazalova, O., Jedlicka. P., Luksan, O., Horak, A., Vaneckova, H., Benes, V., Fiala, I., Hanus, R., Dolezel, D. (2020) Complex evolution of insect insulin receptors and homologous decoy receptors, and functional significance of their multiplicity. Molecular Biology and Evolution, 37 (6), 1775–1789. https://doi.org/10.1093/molbev/msaa048
  44. Tanaka, M., Murakami, K., Ozaki, S., Imura, Y., Tong, X. P., Watanabe, T., Sawaki, T., Kawanami, T., Kawabata, D., Fujii, T., Usui, T., Masaki, Y., Fukushima, T., Jin, Z. X., Umehara, H., Mimori, T. (2010) DIP2 disco-interacting protein 2 homolog A (Drosophila ) is a candidate receptor for follistatin-related proteinfollistatin-like 1 - Analysis of their binding with TGF-β superfamily proteins. FEBS Journal, 277, 4278–4289. https://doi.org/10.1111/j.1742-4658.2010.07816.x
  45. Vázquez-Jiménez, J. G., Roura-Guiberna, A., Jiménez-Mena, L. R., Olivares-Reyes, J. A. (2017) El papel de los ácidos grasos libres en la resistencia a la insulina. Gaceta Médica de México, 153, 852–863. https://doi.org/10.24875/GMM.17002714
  46. Xu, H-J., Xue, J., Lu, B., Zhang, X-C., Zhuo, J-C., He, S-F., Ma, X-F., Jiang, Y-Q., Fan, H-W., Xu, J-Y., Ye, Y. X., Pan, P. L., Li, Q., Bao, Y. Y., Nijhout, H. F., Zhang, C. X. (2015) Two insulin receptors determine alternative wing morphs in planthoppers. Nature, 519, 464–467. https://doi.org/10.1038/nature14286
  47. Yusupova, G. Z., Yusupov, M. M., Cate, J. H. D., Noller, H. F. (2001) The path of messenger RNA through the ribosome. Cell, 106, 233–241. https://doi.org/10.1016/S0092-8674(01)00435-4
  48. Zhao, Y., Huang, G., Zhang, W. (2019) Mutations in NlInR1 affect normal growth and lifespan in the brown planthopper Nilaparvata lugens. Insect Biochemistry and Molecular Biology, 115, 103–246. https://doi.org/10.1016/j.ibmb.2019.103246