Vol. 37 (2021)
Artículos originales

Antagonistic interaction networks in a native and an exotic legume species in Colombian tropical dry forest

Mariana Camacho-Erazo
Departamento de Ecología y Territorio, Pontificia Universidad Javeriana, Transversal 4 # 42-00, Bogotá, 110111, Colombia
Jorge Robles
Departamento de Química, Pontificia Universidad Javeriana, Cra. 7a No. 43-82. Bogotá, Colombia.
Ángela R. Amarillo-Suárez
Departamento de Ecología y Territorio, Pontificia Universidad Javeriana, Transversal 4 # 42-00, Bogotá, 110111, Colombia.

Publicado 2021-06-22

Palabras clave

  • redes ecológicas
  • bruquidos
  • parasitoides
  • especies invasoras
  • leguminosas

Cómo citar

Camacho-Erazo, M., Robles, J., & Amarillo-Suárez, Ángela R. (2021). Antagonistic interaction networks in a native and an exotic legume species in Colombian tropical dry forest. ACTA ZOOLÓGICA MEXICANA (N.S.), 37(1), 1-16. https://doi.org/10.21829/azm.2021.3712355

Resumen

Las interacciones entre plantas y animales desempeñan un papel fundamental en el funcionamiento y la estructura de los ecosistemas. Se espera que las comunidades de insectos asociados a semillas sean muy específicas para cada especie de planta debido a la gran cantidad de barreras físicas y químicas que las semillas imponen a los herbívoros. Además, las especies leguminosas, el taxón vegetal dominante en el bosque seco tropical, ofrecen una gran cantidad de recursos para la especialización de insectos, estructurando comunidades especiliazadas de herbivoros. Sin embargo, la introducción de especies exóticas en este ecosistema puede reducer la diversidad y simplificar las interacciones. Mediante el análisis de redes ecológicas, comparamos la diversidad y estructura de los insectos asociados a las semillas y sus parasitoides entre la especie de leguminosa nativa Pseudosamanea guachapele y la leguminosa exótica e invasora Leucaena leucocephala. También evaluamos las diferencias en la composición química de semillas con el fin de determinar en qué medida ésta podría ayudar a explicar las diferencias en las comunidades de insectos asociadas. El estudio se llevó a cabo en un bosque seco tropical en el departamento de Tolima, Colombia. Encontramos siete especies de escarabajos y ocho especies de parasitoides. Las redes de interacción de insectos de ambas especies de plantas tenían baja conectividad, anidamiento, generalidad y vulnerabilidad. Leucaena leucocephala tuvo la mayor diversidad de escarabajos y parasitoides en comparación con P. guachapele, tal vez porque L. leucocephala produce semillas durante todo el año, mientras que P. guachapele tiene una estacionalidad marcada produciendo frutos sólo durante uno o dos meses del año. Identificamos un total de 26 compuestos en las semillas de los dos huéspedes. Las semillas de P. guachapele, tienen el doble de compuestos que las de L. leucocephala. Entre las principales diferencias entre la composición de las semillas de la planta hospedera se encuentran la composición de ácidos grasos, que ofrecen diferentes fuentes de colesterol para el desarrollo de insectos. Esto puede ayudar a explicar la presencia de especies de consumidores de semillas asociadas a cada planta. Es importante resaltar que las redes descritas aquí pueden cambiar a través del tiempo y los paisajes, haciendo interesante seguir analizando la variación en la riqueza y estructura de dichas redes con el fin de definir hasta qué punto las interacciones encontradas en este estudio se mantienen constantes.

Citas

  1. Amarillo-Suárez, A. R., Fox, C. W. (2006) Population differences in host use by a seed beetle: Local adaptation, phenotypic plasticity and maternal effects. Oecologia, 2, 247–258. https://doi.org/10.1007/s00442-006-0516-y
  2. Amarillo-Suárez, A. R. (2010) Top-down, bottom-up, and horizontal mortality variation in a generalist seed beetle. Revista Colombiana de Entomología, 36, 269–276.
  3. Amarillo-Suárez, A. R., Camacho-Erazo, M. (2020) First record of the seed beetle Merobruchus paquetae (Chrysomelidae, Bruchinae) in the exotic tree Leucaena leucocephala. Caldasia, 42, 336–338. https://doi.org/10.15446/caldasia.v42n2.80061
  4. Amarillo-Suárez, A. R., Repizo, A., Robles, J., Díaz, J., Bustamante, S. (2017) Ability of a Generalist Seed Beetle to Colonize an Exotic Host: Effects of Host Plant Origin and Oviposition Host. Neotropical Entomology, 46, 268–379. https://doi.org/10.1007/s13744-016-0476-9
  5. Armbrecht, I. (1995) Comparación de la mirmecofauna en fragmentos boscosos del valle geográfico del no Cauca, Colombia. Boletín Museo de Entomología Universidad del Valle, 3, 1–14.
  6. Baptiste, M. P., Castaño, N., Cárdenas López, D., Gutiérrez, F. D. P., Gil, D., Lasso, C. A. (2010) Análisis de riesgo y propuesta de categorización de especies introducidas para Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Colombia, 200 pp.
  7. Barbour, M. A., Fortuna, M. A., Bascompte, J., Nicholson, J. R., Julkunen-Tiitto, R., Jules, E. S., Crutsinger, G. M. (2016) Genetic specificity of a plant–insect food web: Implications for linking genetic variation to network complexity. Proceedings of the National Academy of Sciences, 113, 2128–2133. https://doi.org/10.1073/pnas.1513633113
  8. Bascompte, J., Jordano, P. (2014) Mutualistic Networks. Princeton University Press, United States, 292 pp.
  9. Blüthgen, N., Fründ, J., Vázquez, D. P., Menzel, F. (2008) What do interaction network metrics tell us about specialization and biological traits? Ecology, 89, 3387–3399. https://doi.org/10.1890/07-2121.1
  10. Behmer, S. T., Elias, D. O. (2000) Sterol metabolic constraints as a factor contributing to the maintenance of diet mixing in grasshoppers (Orthoptera: Acrididae). Physiological and Biochemical Zoology, 73, 219–230. https://doi.org/10.1086/316728
  11. Behmer, S. T., Nes, W. D. (2003) Insect sterol nutrition and physiology: a global overview. Advances in Insect Physiology, 31, 1–72. https://doi.org/10.1016/s0065-2806(03)31001-x
  12. Borror, D. J., White, R. E. (1970) Field Guide to Insects. Peterson Field Guide. United States, 404 pp.
  13. Borges, R. M., Bessière, J., Hossaert-McKey, M. (2008) The chemical ecology of seed dispersal in monoecious and dioecious figs. Functional Ecology, 22, 484–493. https://doi.org/10.1111/j.1365-2435.2008.01383.x
  14. Cardenas, L. D, Baptiste, M. P., Castaño, N. (2017) Plantas exóticas con alto potencial de invasión en Colombia. Instituto de Investigaciones de Recursos Biológicos Alexander Von Humboldt. Colombia, 295 pp.
  15. Carnicer, J., Jordano, P., Melián, C. J. (2009) The temporal dynamics of resource use by frugivorous birds: a network approach. Ecology, 90, 1958–1970. https://doi.org/10.1890/07-1939.1
  16. Castro, V (2014) Potencial de colonización de la especie exótica Acanthoscelides macrophthalmus (Coleoptera: Chrysomelidae) a semillas de especies nativas de leguminosas [Tesis de pregrado]. Pontificia Universidad Javeriana.
  17. CorAntioquia (2008) Manejo de las semillas y la propagación de diez especies forestales del Bosque Seco Tropical. Corporación Autónoma Regional del Centro de Antioquia. Colombia, 82 pp.
  18. Corzo, G., Levartoski de Araujo, A. I, de Almeida, A. M. (2011) Connectivity and Nestedness in Bipartite Networks from Community Ecology. Journal of Physics, 285, 012009. https://doi.org/10.1088/1742-6596/285/1/012009
  19. Cuevas-Reyes, P., Quesada, M., Hanson, P, Oyama, K. (2007) Interactions Among Three Trophic Levels and Diversity of Parasitoids: A Case of Top-Down Processes in Mexican Tropical Dry Forest. BioOne, 36, 792–800. http://dx.doi.org/10.1603/0046-225X(2007)36[792:IATTLA]2.0.CO;2
  20. Dáttilo, W., Rico-Gray, V. (2018) Ecological Networks in the tropics. An integrative overview of species interactions from some of the most species-rich habitats on earth. Springer International. Switzerland, 216 pp.
  21. Delgado-Machuca, N., Meza-Lázaro, R. N., Romero-Nápoles, J., Sarmiento-Monroy, C., Amarillo-Suárez, A. R., Bayona-Vásquez, N. J., Zaldivar-Riverón, A. (2019) Genetic structure, species limits and evolution of the parasitoid wasp genus Stenocorse (Braconidae: Doryctinae) based on nuclear 3RAD and mitochondrial data. Systematic Entomology, 45, 33–47. https://doi.org/10.1111/syen.12373
  22. Delmas, E., Besson, M., Brice, M. H., Burkle, L. A., Dalla-Riva, G. V., Fortin, M. J., Gravel, D., Guimarães Jr, P. R., Hembry, D. H., Newman, E. A., Olesen, J. M., Pires, M. M., Yeakel, J. D., Poisot, T. (2019) Analyzing ecological networks of species interactions. Biological Reviews, 94, 16–36. https://doi.org/10.1101/112540
  23. Didham, R. K., Lawton, J. H., Hammond, P. M., Eggleton, P. (1998) Trophic structure stability and extinction dynamics of beetles (Coleoptera) in tropical forest fragments. Philosophical Transactions of the Royal Society B: Biological Sciences, 353, 437–451. https://doi.org/10.1098/rstb.1998.0221
  24. Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A., Ewers, R. M. (2007) Interactive effects of habitat modification and species invasion on native species decline. Trends in Ecology & Evolution, 22, 489–496. https://doi.org/10.1016/j.tree.2007.07.001
  25. Dormann, C. F., Fründ, J., Gruber, B. (2014) Package ‘bipartite’. Visualizing bipartite networks and calculating some (ecological) indices (Version 2.04). R Foundation for Statistical Computing.
  26. Dunne, J. A., Williams, R. J., Martinez, N. D. (2002) Food-web structure and network theory: The role of connectance and size. Proceedings of the National Academy of Sciences, 99, 12917–12922. https://doi.org/10.1073/pnas.192407699
  27. Fernández, F., Sharkey, M. J. (2006) Introducción a los Hymenoptera de la region neotropical. Universidad Nacional de Colombia, Colombia, 920 pp.
  28. Fortuna, M. A., Stouffer, D. B., Olesen, J. M., Jordano, P., Mouillot, D., Krasnov, R. P., Bascompte, J. (2010) Nestedness versus modularity in ecological networks: two sides of the same coin? Journal of Animal Ecology, 79, 811–817. https://doi.org/10.1111/j.1365-2656.2010.01688.x
  29. Fox, C. W., Bush, M. L., Messina, F. J. (2010) Biotypes of the seed beetle Callosobruchus maculatus have differing effects on the germination and growth of their legume hosts. Agricultural and Forest Entomology, 12, 353–362. https://doi.org/10.1111/j.1461-9563.2010.00484.x
  30. Geilfus, F. (1989) El árbol al servicio del agricultor: Manual de agroforestería para el desarrollo rural. Catie, Santo domingo, República Dominicana, 678 pp.
  31. González, E., Salvo., A., Valladares, G. (2015) Arthropods on plants in a fragmented Neotropical dry forest: A functional analysis of area loss and edge effects. Insect Science, 22, 129–138. https://doi.org/10.1111/1744-7917.12107
  32. Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T., Jauker, F. (2018) Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networks. Nature Ecology & Evolution, 2, 1408–1417. https://doi.org/10.1038/s41559-018-063
  33. Grether, R., Martínez-Bernal, A., Luckow, M., Zárate, S. (2006) Fascículo 44. Mimosaceae tribu Mimoseae in: Flora del Valle de Tehuacán-Cuicatlán, UNAM. Ciudad de México, México.
  34. Hagstrum, D. W., Subramanyam, B. (2009) Stored-product insect resource. AACC International, United States, 509 pp.
  35. Hendrickx, F., Maelfait, J. P., Van Wingerden, W., Schweiger, O., Speelmans, M., Aviron, S., Augenstein, I., Billeter, R., Bailey, D., Bukacek, R., Françoise, B., diekötter, T., Dirksen, J., Herzog, F., Liira, J., Roubalova, M., Vandomme, V., Bugter, R. (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. Journal of Applied Ecology, 44, 340–351. https://doi.org/10.1111/j.1365-2664.2006.01270.x
  36. Hetz, M., Johnson, C. D. (1988) Hymenopterous parasites of some bruchid beetles of north and central America. Journal of Stored Products Research, 3, 131–144. https://doi.org/10.1016/0022-474X(88)90010-0
  37. Ings, T. C., Montoya, J. M., Blüthgen, N., Brown, L., Dormann, C. F., Edwards, F., Figueroa, D., Jacob, U., Jones, J. I., Lauridsen, R. B., Ledger, M. E., Lewis, H. M., Olesen, J. M., Veen, F. J., Warren, P. H., Woodward, G. (2009) Ecological networks - Beyond food webs. Journal Animal Ecology, 78, 253–269. https://doi.org/10.1111/j.1365-2656.2008.01460.x
  38. Jhonson, C. D. (1990) Systematics of the seed beetle genus Acanthoscelides (Bruchidae) of Northern South America. Transactions of the American Entomological Society, 116, 297–618. https://www.jstor.org/stable/25078519
  39. Jhonson, S., Collin, C., Wissman, H., Halvarsson, E., Agren, J. (2004) Factors Contributing to Variation in Seed Production among Remnant Populations of the Endangered Daisy Gerbera aurantiaca. Biotropica, 36, 148–155. https://doi.org/10.1111/j.1744-7429.2004.tb00307.x
  40. Kolchinsky, A., Gates, A. J., Rocha, L. M. (2015) Modularity and the spread of perturbations in complex dynamical systems. Physical Review, 92, 060801. https://doi.org/10.1103/PhysRevE.92.060801
  41. Kenny, D., Loehle, C. (1991) Are Food Webs Randomly Connected? Ecology, 5, 1794–1799.
  42. LaSalle, J., Gauld, J. D. (1991) Parasitic Hymenoptera and the biodiversity crisis. Redia, 4, 315–334.
  43. Louda, S. M., Potvin, M. A., Collinge, S. K. (1990) Predispersal seed predation, postdispersal seed predation and competition in the recruitment of seedlings of a native thistle in sandhills prairie. American Midland Naturalist, 124, 105–113. https://doi.org/10.2307/2426083
  44. Lowe, S., Browne, M., Boudjelas, S., De Poorter, M. (2004) 100 de las Especies Exóticas Invasoras más dañinas del mundo. Una selección del Global Invasive Species Database. Aliens, 12, 1–12. Available at: https://www.iucn.org/es/content/100-de-las-especies-exoticas-invasoras-mas-daninas-del-mundo-una-seleccion-del-global-invasive-species-database (accessed on Jun 12, 2020).
  45. Lozano-Grande, M. A., Gorinstein, S., Espitia-Rangel, E., Dávila-Ortiz, G., Martínez-Ayala, A. L. (2018) Plant Sources, Extraction Methods, and Uses of Squalene. International journal of agronomy, 2018, 1829160. https://doi.org/10.1155/2018/1829160
  46. Mahecha-Vega, G. E., Ovalle-Escobar, A., Camelo-Salamanca, D., Rozo-Fernández, A., Barrero-Barrero, D. (2012) Vegetación del territorio CAR, 450 especies de sus llanuras y montañas. Corporación Autónoma Regional. Colombia, 893 pp.
  47. Manfio, D., Ribeiro-Costa, C. S. (2016) A key to American genus Merobruchus Bridwell (Coleoptera: Chrysomelidae: Bruchinae) with descriptions of species and two new host plant records for the subfamily. Zootaxa, 4078, 284–319. https://doi.org/10.11646/zootaxa.4078.1.25
  48. Maron, J. L., Crone, E. (2006) Herbivory: effects on plant abundance, distribution and population growth. Proceedings of the royal society B, 273, 2575–2584. https://doi.org/10.1098/rspb.2006.3587
  49. Montero-Castaño, A., Vila, M. (2012) Impact of landscape alteration and invasions on pollinators: a meta-analysis. Journal of Ecology, 100, 884–893. https://doi.org/10.1111/j.1365-2745.2012.01968.x
  50. Morales-Silva, T., Maia, L. F., Martins, A. L., Modesto-Zampieron, S. L. (2019) Herbivore, parasitoid and hyperparasitoid insects associated with fruits and seeds of Enterolobium contortisiliquum (Vell.) Morong (Fabaceae). Brazilian Journal of Biology, 9, 369–376. https://doi.org/10.1590/1519-6984.170105
  51. Nakagawa, T., Takeuchi, Y., Kenta, T., Nakashizuka, T. (2005) Predispersal seed predation by insects vs. vertebrates in six dipterocarp species in Sarawak, Malaysia. Biotropica, 37, 389–396. https://doi.org/10.1111/j.1744-7429.2005.00051.x
  52. Nurse, R. E, Booth, B. D., Swanton, C. J. (2003) Predispersal seed predation of Amaranthus retroflexus and Chenopodium album growing in soyabean fields. Weed Research, 43, 260–268. https://doi.org/10.1046/j.1365-3180.2003.00342.x
  53. Olesen, J. M., Bascompte, J., Elberling, H., Jordano, P. (2008) Temporal dynamics in a pollination network. Ecology, 89, 1573–1582. https://doi.org/10.1890/07-0451.1
  54. Parker, J. D., Hay, M. E. (2005) Biotic resistance to plant invasions? Native herbivores prefer non-native plants. Ecology letter, 8, 959–967. https://doi.org/10.1111/j.1461-0248.2005.00799.x
  55. Pérez-Benavides, A. L., Hernández-Baz, F., González, J. M., Zaldívar-Riverón, A. (2019) Updated taxonomic checklist of Chalcidoidea (Hymenoptera) associated with Bruchinae (Coleoptera: Chrysomelidae). Zootaxa, 4638, 301–343. https://doi.org/10.11646/zootaxa.4638.3.1
  56. Pizano, C., García, H. (2014) El bosque seco tropical en Colombia. Instituto de Investigaciones de Recursos Biológicos Alexander Von Humboldt. Colombia, 354 pp.
  57. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Austria.
  58. Sanabria-Silva, A. M., Amarillo-Suárez, A. R. (2017) Same but different: Diversity and complexity of an arthropod trophic network and comparative seed viability of an invasive and a native legume species. Journal of Arid Environment, 145,10–17. https://doi.org/10.1016/j.jaridenv.2017.04.004
  59. Sharratt, M. E. J., Olckers, T. (2012) The biological control agent Acanthoscelides macrophthalmus (Chrysomelidae: Bruchinae) inflicts moderate levels of seed damage on its target, the invasive tree Leucaena leucocephala (Fabaceae), in the KwaZulu-Natal coastal region of South Africa. African Entomology, 20, 44–51. https://doi.org/10.4001/003.020.0106
  60. Sauve, A. M. C., Fontaine, C., Thébault, E. (2014) Structure–stability relationships in networks combining mutualistic and antagonistic interactions. Oikos, 123, 378–384. https://doi.org/10.1111/j.1600-0706.2013.00743.x
  61. Tallamy, D. G. (2004) Do alien plants reduce insect biomass? Conservation biology, 18, 1689–1692. https://doi.org/10.1111/j.1523-1739.2004.00512.x
  62. Tuda, M., Wu, L., Tateishi, Y., Niyomdham, C., Buranapanichpan, S., Morimoto, K., Wang, C. P., Zhang, Y. C., Murugan, K., Chou, L. Y., Jhonson, C. D. (2009) A novel host shift and invaded range of a seed predator, Acanthoscelides macrophthalmus (Coleoptera: Chrysomelidae: Bruchinae), of an invasive weed, Leucaena leucocephala. Entomological Science, 12, 1–8. https://doi.org/10.1111/j.1479-8298.2009.00297.x
  63. Udayagiri, S., Wadhi, R. (1982) A key to world bruchid Genera. NBPGR Sci, Monigr, 5, 1–19.
  64. Vanbergen, A. J., Woodcock, B. A., Heard, M. S., Chapman, D. S. (2017) Network size, structure and mutualism dependence affect the propensity for plant–pollinator extinction cascades. Functional Ecology, 31, 1285–1293. https://doi.org/10.1111/1365-2435.12823
  65. West, N. M. (2012) Herbivory affects patterns of plant reproductive effort and seed production (Major). The University of Nebraska.
  66. Wood, A., Haga, E. B., Costa, V. A., Rossi, M. N. (2016) Geographic distribution, large-scale spatial structure and diversity of parasitoids of the seed-feeding beetle. Bulletin of Entomological Research, 107, 22–331. https://doi.org/10.1017/S0007485316000924
  67. Zaldivar-Riverón, A., Jasso-Martínez, J., Delgado-Machuca, N., Sarmiento-Monroy, C., González-Joya, A., Del Bianco-Faria, L. (2019) Taxonomic Revision of the New World Genus Stenocorse Marsh (Hymenoptera: Braconidae: Doryctinae). Annales Zoologici, 69, 617–639.
  68. https://doi.org/10.3161/00034541ANZ2019.69.3.011