Vol. 37 (2021)
Artículos originales

Social correlates of variation in urinary oxytocin concentrations of mantled howler monkeys Alouatta palliata (Gray, 1849) (Primates: Atelidae): A preliminary assessment

Diana Moreno-Espinoza
Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala S/N Colonia Industrial Animas, Xalapa, Veracruz, 91190, México.
Pedro Américo D. Dias
Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala S/N Colonia Industrial Animas, Xalapa, Veracruz, 91190, México.
Alejandro Coyohua-Fuentes
Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala S/N Colonia Industrial Animas, Xalapa, Veracruz, 91190, México.
Domingo Canales-Espinosa
Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala S/N Colonia Industrial Animas, Xalapa, Veracruz, 91190, México.
Ariadna Rangel-Negrín
Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala S/N Colonia Industrial Animas, Xalapa, Veracruz, 91190, México.

Publicado 15-07-2021

Palabras clave

  • afiliación
  • Alouatta
  • mecanismos neuroendocrinos
  • platirrinos
  • sociabilidad

Cómo citar

Moreno-Espinoza, D., Dias, P. A. D., Coyohua-Fuentes, A., Canales-Espinosa, D., & Rangel-Negrín, A. (2021). Social correlates of variation in urinary oxytocin concentrations of mantled howler monkeys Alouatta palliata (Gray, 1849) (Primates: Atelidae): A preliminary assessment. ACTA ZOOLÓGICA MEXICANA (N.S.), 37(1), 1–13. https://doi.org/10.21829/azm.2021.3712319

Métrica

Resumen

Existe una creciente evidencia de que la sociabilidad en primates no humanos está relacionada con mecanismos neuroendocrinos. La arginina vasopresina, las endorfinas y la oxitocina pueden estar involucradas en tales mecanismos. Aquí, realizamos un análisis preliminar de los correlatos sociales de la variación en las concentraciones de oxitocina urinaria en monos aulladores de manto (Alouatta palliata). De enero a diciembre de 2017, estudiamos 13 monos aulladores de manto adultos pertenecientes a dos grupos. Registramos la ocurrencia de interacciones sociales (547.5 horas de observación); evaluamos la proximidad entre los miembros del grupo (2.194 registros instantáneos); y recolectamos 172 muestras de orina. Analizamos las muestras de orina (ELISA) para determinar las concentraciones de oxitocina, las cuales corregimos por la gravedad específica, lo que resultó en 54 muestras analizadas. Con respecto a cuando no ocurrieron interacciones afiliativas, las concentraciones de oxitocina aumentaron aproximadamente un 62% cuando los individuos participaron en interacciones afiliativas, y las concentraciones de oxitocina fueron mayores cuando díadas con una relación social de baja calidad se afiliaron. Estos resultados convergen con propuestas previas de que la oxitocina está vinculada a la participación en interacciones afiliativas. La convergencia entre estos resultados y los reportados para otros taxa apoya la hipótesis de que los mecanismos biológicos que permiten la sociabilidad de los primates se comparten entre las especies.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

  1. Alberts, S. (2018) Social influences on survival and reproduction: Insights from a long-term study of wild baboons. Journal of Animal Ecology, 88, 47–66. https://doi.org/10.1111/1365-2656.12887
  2. Altmann, J. (1974) Observational study of behavior: Sampling methods. Behaviour, 49, 227–267. https://doi.org/10.1163/156853974X00534
  3. Altmann, J., Alberts, S. C. (2003) Intraspecific variability in fertility and offspring survival in a nonhuman primate: Behavioral control of ecological and social sources. Pp. 140–169. In: K. W. B. Wachter, R. A. Bulatao (Eds.). Offspring: Human fertility behavior in biodemographic perspective. National Academies Press, Washington, DC.
  4. Amico, J. A., Ulbrecht, J. S., Robinson, A. G. (1987) Clearance studies of oxytocin in humans using radioimmunoassay measurements of the hormone in plasma and urine. Journal of Clinical Endocrinology and Metabolism, 64, 340–345. https://doi.org/10.1210/jcem-64-2-340
  5. Anacker, A. M., Beery, A. K. (2013) Life in groups: the roles of oxytocin in mammalian sociality. Frontiers in Behavioral Neuroscience, 7, 1–10. https://doi.org/10.3389/fnbeh.2013.00185
  6. Anestis, S. F. (2010) Hormones and social behavior in primates. Evolutionary Anthropology, 19, 66–78. https://doi.org/10.1002/evan.20253
  7. Aureli, F., Fraser, O. N., Schaffner, C. M., Schino, G. (2012) The regulation of social relationships. Pp. 531–551. In: J. C. Mitani, J. Call, P. M. Kappeler, R. A. Palombit, J. B. Silk (Eds.). The evolution of primate societies. Chicago University Press, Chicago.
  8. Beery, A. K., Zucker, I. (2010) Oxytocin and same-sex social behavior in female meadow voles. Neuroscience, 169, 665–673. https://doi.org/10.1016/j.neuroscience.2010.05.023
  9. Benarroch, E. (2013) Oxytocin and vasopressin. Social neuropeptides with complex neuromodulatory functions. American Academy of Neurology, 80, 1521–1528. https://doi.org/10.1212/WNL.0b013e31828cfb15
  10. Benítez, M. E., Sosnowski, M. J., Tomeo, O. B., Brosnan, S. F. (2018) Urinary oxytocin in capuchin monkeys: Validation and the influence of social behavior. American Journal of Primatology, 88, 1–11. https://doi.org/10.1002/ajp.22877
  11. Bezanson, M., Garber, P. A., Murphy, J. T., Premo, L. S. (2008) Patterns of subgrouping and spatial affiliation in a community of mantled howling monkeys (Alouatta palliata). American Journal of Primatology, 70, 282–293. https://doi.org/10.1002/ajp.20486
  12. Bick, J., Dozier, M. (2010) Mothers’ concentrations of oxytocin following close, physical interactions with biological and nonbiological children. Developmental Psychobiology, 52, 100–107. https://doi.org/10.1002/dev.20411
  13. Boose K., White F., Brand, C., Meinelt, A., Snodgradd, J. (2018) Infant handling in bonobos (Pan paniscus): Exploring functional hypotheses and the relationship to oxytocin. Physiology & Behavior, 193, 154–166. https://doi.org/10.1016/j.physbeh.2018.04.012
  14. Cavanaugh, J., Mustoe, A., French, J. A. (2018) Oxytocin regulates reunion affiliation with a pair mate following social separation in marmosets. American Journal of Primatology, 88, 1–9. https://doi.org/10.1002/ajp.22750
  15. Crockett, C. M., Eisenberg, J. F. (1987) Howlers: Variations in group size and demography. Pp. 54–68. In: B. B. Smuts, D. L. Cheney, R. M. Seyfarth, R. W. Wrangham, T. T. Struhsaker (Eds.). Primate societies. University of Chicago Press, Chicago.
  16. Crockford, C., Wittig, R., Langergraber, K., Ziegler, T., Zuberbühler, K., Deschner, T. (2013) Urinary oxytocin and social bonding in related and unrelated wild chimpanzees. Proceedings of The Royal Society, 280, e20122765. https://doi.org/10.1098/rspb.2012.2765
  17. De Dreu, C. (2012) Oxytocin modulates cooperation within and competition between groups: An integrative review and research agenda. Hormones and Behavior, 61, 419–428. https://doi.org/10.1016/j.yhbeh.2011.12.009
  18. Di Fiore, A., Campbell, C. J. (2007) The atelines: Variation in ecology, behavior, and social organization. Pp. 155–185. In: C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger S. K. Bearder (Eds.). Primates in perspective. Oxford University Press, Oxford, NY.
  19. Dias, P. A. D., Rangel-Negrín, A. (2015) An ethogram for the social behavior of adult Alouatta palliata mexicana and A. pigra. Laboratorio de Ecología del Comportamiento de Primates, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico. https://doi.org/10.13140/RG.2.1.1043.7840
  20. Fujii, T., Schug, J., Nishina, K., Takahashi, T., Okada, H., Takagishi, H. (2016) Relationship between salivary oxytocin levels and generosity in preschoolers. Scientific Reports, 6, 1–7. https://doi.org/10.1038/srep38662
  21. González-Hernández, M., Rangel-Negrín, A., Schoof, V., Chapman, C., Canales-Espinoza, D., Dias, P. A. D. (2014) Transmission patterns of pinworms in two sympatric congeneric primate species. International Journal of Primatology, 35, 445–462. https://doi.org/10.1007/s10764-014-9751-y
  22. Insel, T. R. (2010) The challenge of translation in social neuroscience: A review of oxytocin, vasopressin, and affiliative behavior. Neuron, 65, 768–779. https://doi.org/10.1016/j.neuron.2010.03.005
  23. Jasso del Toro, C., Kekaris, K. A-I. (2019) Affiliative behaviors. Encyclopedia of animal cognition and behavior. Springer, New York. https://doi.org/10.1007/978-3-319-47829-6_1040-1
  24. Kumaresan, P., Subramanian, M., Anandarangam, P. B., Kumaresan, M. (1979) Radioimmunoassay of plasma and pituitary oxytocin in pregnant rats during various stages of pregnancy and parturition. Journal of Endocrinological Investigation, 2, 65–70. https://doi.org/10.1007/bf03349277
  25. Liu, Y., Wang, Z. X. (2003) Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience, 121, 537–544. https://doi.org/10.1016/S0306-4522(03)00555-4
  26. Love, T. M. (2014) Oxytocin, motivation and the role of dopamine. Pharmacology, Biochemistry and Behavior, 119, 49–60. https://doi.org/10.1016/j.pbb.2013.06.011
  27. Massen, J., de Voss, H., Sterck, E. (2010) Close social associations in animals and humans: functions and mechanisms of friendship. Behaviour, 147, 1379–1412. https://doi.org/10.1163/000579510X528224
  28. Meyer-Lindenberg, A., Domes, G., Kirsch, P., Heinrichs, M. (2011) Oxytocin and vasopressin in the human brain: social neuropeptides. Nature Reviews Neuroscience, 12, 524–538. https://doi.org/10.1038/nrn3044
  29. Miller, R., Brindle, E., Holman, D. J., Shofer, J., Klein, N. A., Soules, M. R., O’Connor, K. A. (2004) Comparison of specific gravity and creatinine for normalizing urinary reproductive hormone concentrations. Clinical Chemistry, 50, 924–932. https://doi.org/10.1373/clinchem.2004.032292
  30. Morhenn, V. B., Park, J. W., Piper, E., Zak, P. J. (2008) Monetary sacrifice among strangers is mediated by endogenous oxytocin release after physical contact. Evolution and Human Behavior, 29, 375–383. https://doi.org/10.1016/j.evolhumbehav.2008.04.004
  31. Neumann, I. D. (2003) Brain mechanisms underlying emotional alterations in the peripartum period in rats. Depression and Anxiety, 17, 111–121. https://doi.org/10.1002/da.10070
  32. Packer, C., Collins, D. A., Sindimwo, A., Goodall, J. (1995) Reproductive constraints on aggressive competition in female baboons. Nature, 373, 60–63. https://doi.org/10.1038 / 373060a0
  33. Pinheiro, J., Bates, D. (2000) Mixed-effects models in S and S-plus. Springer, New York, NY, 528 pp.
  34. R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  35. Rincon, A. V., Deschner, T., Schülke, O., Ostner, J. (2020) Oxytocin increases after affiliative interactions in male Barbary macaques. Hormones and Behavior, 119, 104661. https://doi.org/10.1016/j.yhbeh.2019.104661
  36. Ryu, H., Hill, D. A., Furuichi, T. (2014) Prolonged maximal sexual swelling in wild bonobos facilitates affiliative interactions between females. Behaviour, 152, 285–311. https://doi.org/10.1163/1568539X-00003212
  37. Samuni, L., Preis, A., Mundry, R., Deschner, T., Crockford, C., Wittig, R. M. (2016) Oxytocin reactivity during intergroup conflict in wild chimpanzees. Proceedings of the National Academy of Sciences, 14, 268–273. https://doi.org/10.1073/pnas.1616812114
  38. Seltzer, L. J., Ziegler, T. E. (2007) Non-invasive measurement of small peptides in the common marmoset (Callithrix jacchus): A radiolabeled clearance study and endogenous excretion under varying social conditions. Hormones and Behavior, 51, 436–442. https://doi.org/10.1016/j.yhbeh.2006.12.012
  39. Snowdon, C., Pieper, B., Boe, C., Cronin, K., Kurian, A., Ziegler, T. (2010) Variation in oxytocin is related to variation in affiliative behavior in monogamous, pairbonded tamarins. Hormones and Behavior, 58, 614–618. https://doi.org/10.1016/j.yhbeh.2010.06.014
  40. Spinolo, L. H., Raghow, R., Crowley, W. R. (1992). Oxytocin messenger RNA levels in hypothalamic, paraventricular, and supraoptic nuclei during pregnancy and lactation in rats. Annals of the New York Academy of Sciences, 652, 425–428. https://doi.org/10.1111/j.1749-6632.1992.tb34373.x
  41. Van Belle, S., Estrada, A., Strier, K. B. (2008). Social relationships among male Alouatta pigra. International Journal of Primatology, 29, 1481–1498. https://doi.org/10.1007/s10764-008-9309-y
  42. Young, C. (2019) Agonistic behavior. Encyclopedia of animal cognition and behavior. Springer, New York. https://doi.org/10.1007/978-3-319-47829-6_320-1
  43. Wang, E., Milton, K. (2003) Intragroup social relationships of male Alouatta palliata on Barro Colorado Island, Republic of Panama. International Journal of Primatology, 24, 1227–1243. https://doi.org/10.1023/B:IJOP.0000005989.29238.ce
  44. Witting, R., Crockford, C., Deschner, T., Langergraber, K., Ziegler, T., Zuberbühler, K. (2014) Food sharing is linked to urinary oxytocin levels and bonding. Proceedings of the Royal Society, 281, e20133096. https://doi.org/10.1098/rspb.2013.3096