Vol. 38 (2022)
Artículos originales

Intra-population variation of body temperature of the lizard Sceloporus anahuacus (Squamata: Phrynosomatidae) in Sierra del Ajusco, Mexico

Martha Anahí Güizado-Rodríguez
Laboratorio de Zoología, División de Biología, Instituto Tecnológico Superior de Zacapoaxtla, Tecnológico Nacional de México, Carretera Acuaco-Zacapoaxtla Km. 8, Col. Totoltepec, Zacapoaxtla, Puebla, C. P. 73680, México.
Uri Omar García-Vázquez
Laboratorio de Sistemática Molecular, Carrera de Biología, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de mayo s/n, Col. Ejército de Oriente, Ciudad de México, Iztapalapa, C. P. 09230, México
Biografía
Israel Solano-Zavaleta
Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, C. P. 04510 Ciudad de México, México.
Rolando Jonathan Maceda-Cruz
Laboratorio de Sistemática Molecular, Carrera de Biología, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de mayo s/n, Col. Ejército de Oriente, Ciudad de México, Iztapalapa, C. P. 09230, México.
Christopher Duifhuis-Rivera
Laboratorio de Sistemática Molecular, Carrera de Biología, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de mayo s/n, Col. Ejército de Oriente, Ciudad de México, Iztapalapa, C. P. 09230, México.

Publicado 2022-02-22

Palabras clave

  • ecología térmica,
  • ectotermos,
  • reptiles,
  • bosque de pino,
  • Sceloporus anahuacus,
  • México
  • ...Más
    Menos

Cómo citar

Güizado-Rodríguez, M. A., García-Vázquez, U. O., Solano-Zavaleta, I., Maceda-Cruz, R. J., & Duifhuis-Rivera, C. (2022). Intra-population variation of body temperature of the lizard Sceloporus anahuacus (Squamata: Phrynosomatidae) in Sierra del Ajusco, Mexico. ACTA ZOOLÓGICA MEXICANA (N.S.), 38(1), 1–12. https://doi.org/10.21829/azm.2022.3812318

Resumen

Evaluamos la variación intrapoblacional de la temperatura corporal de la lagartija mexicana Sceloporus anahuacus (Phrynosomatidae) en la Sierra del Ajusco, México. La distribución geográfica de esta lagartija se limita a las partes más altas de las montañas que bordean el sur del valle mexicano en la Ciudad de México. El estudio de la temperatura corporal de S. anahuacus y su relación con el medio ambiente es importante debido a que los taxones de alta elevación están seriamente amenazados por el cambio climático. Por esa razón, exploramos la relación de la temperatura corporal de S. anahuacus con la temperatura del aire y del sustrato, y comparamos la temperatura corporal entre sexos, clase de edad, condición reproductiva y el estado de actividad. En general, la temperatura corporal promedio fue de 26.2 ± 5.5 °C con un rango entre 9–39 °C. No encontramos diferencias entre las temperaturas corporales de machos y hembras. Sin embargo, encontramos diferencias significativas según el estado de actividad de ambos sexos. En las hembras, la temperatura corporal no varió en función de la edad o el estado reproductivo. En cambio, encontramos diferencias en la temperatura corporal entre machos de diferentes clases de edad. Los juveniles tuvieron la temperatura corporal más alta, probablemente debido a los requisitos de temperatura diferencial asociados con el desarrollo. Por otro lado, la temperatura corporal de S. anahuacus activos e inactivos estuvo fuertemente asociada con la temperatura ambiental, tal vez debido a hábitos sedentarios y comportamiento territorial. Explorar por qué existe esta variación en la regulación de la temperatura corporal puede proporcionar información sobre los factores que influyen en la supervivencia de esta lagartija endémica mexicana.

Citas

  1. Adolph, S. C. (1990) Influence of behavioral thermoregulation on microhabitat use by two Sceloporus lizards. Ecology, 71, 315–327. https://doi.org/10.2307/1940271 DOI: https://doi.org/10.2307/1940271
  2. Álvarez del Castillo, C. (1987) La vegetación de la Sierra del Ajusco. Cuaderno de Trabajo 33. Departamento de Prehistoria, INAH, México, Distrito Federal, México, 74 pp.
  3. Amat, F., Llorente, G. A., Carretero, M. A. (2003) A preliminary study on thermal ecology, activity times and microhabitat use of Lacerta agilis (Squamata: Lacertidae) in the Pyrenees. Folia Zoologica, 52, 413–422.
  4. Andrews, R. M. (1998) Geographic variation in field body temperature of Sceloporus lizards. Journal of Thermal Biology, 23, 329–334. https://dx.doi.org/10.1016/S0306-4565(98)00018-7 DOI: https://doi.org/10.1016/S0306-4565(98)00018-7
  5. Andrews, R. M., Méndez-de la Cruz, F. R., Villagrán-Santa Cruz, M., Rodríguez-Romero, F. (1999) Field and selected body temperatures of the lizards Sceloporus aeneus and Sceloporus bicanthalis. Journal of Herpetology, 33, 93–100. https://dx.doi.org/10.2307/1565547 DOI: https://doi.org/10.2307/1565547
  6. Andrews, R. M., Rose, B. R. (1994) Evolution of viviparity: constrains on egg retention. Physiological Zoology, 67, 1006–1024. https://dx.doi.org/10.1086/physzool.67.4.30163876 DOI: https://doi.org/10.1086/physzool.67.4.30163876
  7. Angert, A. L., Hutchison, D., Glossip, D., Losos, J. B. (2002) Microhabitat use and thermal biology of the collared lizard (Crotaphytus collaris collaris) and the fence lizard (Sceloporus undulatus hyacinthinus) in Missouri Glades. Journal of Herpetology, 36, 23–29. https://dx.doi.org/10.1670/0022-1511(2002)036[0023:MUATBO]2.0.CO;2 DOI: https://doi.org/10.1670/0022-1511(2002)036[0023:MUATBO]2.0.CO;2
  8. Angilletta, M. J. Jr. (2001) Thermal and physiological constraints on energy assimilation in a widespread lizard (Sceloporus undulatus). Ecology, 82, 3044–3056. https://dx.doi.org/10.2307/2679833 DOI: https://doi.org/10.1890/0012-9658(2001)082[3044:TAPCOE]2.0.CO;2
  9. Araújo, M. B., Thuiller, W., Pearson, R. G. (2006) Climate warming and the decline of amphibians and reptiles in Europe. Journal of Biogeography, 33, 1712–1728. https://doi.org/10.1111/j.1365-2699.2006.01482.x DOI: https://doi.org/10.1111/j.1365-2699.2006.01482.x
  10. Avery, R. A. (1982) Field studies of body temperatures and thermoregulation. Pp. 93–166. In: C. Gans, F. H. Pough (Eds.). Biology of the Reptilia. Vol. 12. Academic Press, New York, USA.
  11. Ávila-Bocanegra, L. E., Smith, G. R., Woolrich-Piña, G. A., Lemos-Espinal, J. A. (2012) Body temperatures of Sceloporus anahuacus from a montane zone of northeastern Estado de México, Mexico. Herpetological Bulletin, 121, 27–29.
  12. Ayers, D. Y., Shine, R. (1997) Thermal influences on foraging ability: body size, posture and cooling rate of an ambush predator, the python Morelia spilota. Functional Ecology, 11, 342–347. https://doi.org/10.1046/j.1365-2435.1997.00093.x DOI: https://doi.org/10.1046/j.1365-2435.1997.00093.x
  13. Bartholomew, G. A. (1982) Physiological control of body temperature. Pp. 167–211. In: C. Gans, F. H. Pough (Eds.). Biology of the Reptilia. Vol. 12. Academic Press, New York, USA.
  14. Bogert, C. M. (1949) Thermoregulation and eccritic body temperatures in Mexican lizards of the genus Sceloporus. Anales del Instituto de Biología de la Universidad Nacional Autónoma de México, 20, 415–426.
  15. Brattstrom, B. H. (1965) Body temperatures of reptiles. American Midland Naturalist, 73, 376–422. https://dx.doi.org/10.2307/2423461 DOI: https://doi.org/10.2307/2423461
  16. Brown, R. P., Griffin, S. (2005) Lower selected body temperatures after food deprivation in the lizard Anolis carolinensis. Journal of Thermal Biology, 30, 79–83. https://dx.doi.org/10.1016/j.jtherbio.2004.07.005 DOI: https://doi.org/10.1016/j.jtherbio.2004.07.005
  17. Casas-Andreu, G., Gurrola-Hidalgo, M. A. (1993) Comparative ecology of two species of Cnemidophorus in coastal Jalisco, Mexico. Pp. 133–150. In: J. W. Wright, L. J. Vitt (Eds.). Biology of whiptail lizards (genus Cnemidophorus). University of Oklahoma Press, Norman, USA.
  18. Chen, X. J., Xu, X. F., Ji, X. (2003) Influence of body temperature on food assimilation and locomotor performance in white-striped grass lizards, Takydromus wolteri (Lacertidae). Journal of Thermal Biology, 28, 385–391. https://doi.org/10.1016/S0306-4565(03)00022-6 DOI: https://doi.org/10.1016/S0306-4565(03)00022-6
  19. Clusella-Trullas, S., Chown, S. L. (2014) Lizard thermal trait variation at multiple scales: a review. Journal of Comparative Physiology B, 184, 5–21. https://doi.org/10.1007/s00360-013-0776-x DOI: https://doi.org/10.1007/s00360-013-0776-x
  20. Crowley, S. R. (1985) Thermal sensitivity of spring-running in the lizard Sceloporus undulatus: support for a conservative view of thermal physiology. Oecologia, 66, 219–225. https://doi.org/10.1007/BF00379858 DOI: https://doi.org/10.1007/BF00379858
  21. García, E. (1973) Modificaciones al sistema de clasificación climática de Köppen. Segunda Edición. Instituto de Geografía, UNAM, México, Distrito Federal, México, 246 pp.
  22. Gillis, R. (1991) Thermal biology of two populations of red-chinned lizards (Sceloporus undulatus erythrocheilus) living in different habitats in south-central Colorado. Journal of Herpetology, 25, 18–23. https://dx.doi.org/10.2307/1564789 DOI: https://doi.org/10.2307/1564789
  23. Granados Sánchez, D., López Ríos, G. F., Hernández García, M. A., Sánchez-González, A. (2004) Ecología de la fauna silvestre de la Sierra Nevada y la Sierra del Ajusco. Revista Chapingo, Serie Ciencias Forestales y del Ambiente, 10, 111–117.
  24. Grant, B. W., Dunham, A. E. (1988) Thermally imposed time constraints on the activity of the desert lizard Sceloporus merriami. Ecology, 69, 167–176. https://dx.doi.org/10.2307/1943171 DOI: https://doi.org/10.2307/1943171
  25. Güizado-Rodríguez, M. A., Ballesteros-Barrera, C., Casas-Andreu, G., Barradas-Miranda, V. L., Téllez-Valdés, O., Salgado-Ugarte, I. H. (2012) The impact of global warming on the range distribution of different climatic groups of Aspidoscelis costata costata. Zoological Science, 29, 834–843. https://dx.doi.org/10.2108/zsj.29.834 DOI: https://doi.org/10.2108/zsj.29.834
  26. Güizado-Rodríguez, M. A., García-Vázquez, U. O., Solano-Zavaleta, I. (2011) Thermoregulation by a population of Sceloporus palaciosi from Sierra del Ajusco, Distrito Federal, Mexico. The Southwestern Naturalist, 56, 120–124. https://dx.doi.org/10.1894/PAS-17.1 DOI: https://doi.org/10.1894/PAS-17.1
  27. Heath, J. E. (1964) Reptilian thermoregulation: evaluation of field studies. Science, 146, 784–785. https://dx.doi.org/10.1126/science.146.3645.784 DOI: https://doi.org/10.1126/science.146.3645.784
  28. Herczeg, G., Herrero, A., Saarikivi, J., Gonda, A., Jäntti, M., Merilä, J. (2008) Experimental support for the cost–benefit model of lizard thermoregulation: the effects of predation risk and food supply. Oecologia, 155, 1–10. https://dx.doi.org/10.1007/s00442-007-0886-9 DOI: https://doi.org/10.1007/s00442-007-0886-9
  29. Hitchcock, M. A., McBrayer, L. D. (2006) Thermoregulation in nocturnal ecthotherms: seasonal and intraspecific variation in the Mediterranean gecko (Hemidactylus turcicus). Journal of Herpetology, 40, 185–195. https://dx.doi.org/10.1670/233-04A.1 DOI: https://doi.org/10.1670/233-04A.1
  30. Janzen, F. J. (1994) Climate change and temperature-dependent sex determination in reptiles. Proceedings of the National Academy of Science, 91, 7487–7490. https://doi.org/10.1073/pnas.91.16.7487 DOI: https://doi.org/10.1073/pnas.91.16.7487
  31. Juliana, J. R. St., Bowden, R. M., Janzen, F. J. (2004) The impact of behavioral and physiological maternal effects on offspring sex ratio in the common snapping turtle, Chelydra serpentina. Behavioral Ecology Sociobiology, 56, 270–278. https://doi.org/10.1007/s00265-004-0772-y DOI: https://doi.org/10.1007/s00265-004-0772-y
  32. Kearney, M. (2001) Postural thermoregulatory behavior in the nocturnal lizards Christinus marmoratus and Nephrurus milii (Gekkonidae). Herpetological Review, 32, 11–14.
  33. Lara-Góngora, G. (1983) Two new species of the lizard genus Sceloporus (Reptilia, Sauria, Iguanidae) from the Ajusco and Ocuilán Sierras, Mexico. Bulletin of the Maryland Herpetological Society, 19, 1–14.
  34. Lara-Reséndiz, R. A., García-Vázquez, U. O. (2013) Natural History Notes: Sceloporus anahuacus (Anahuacan Graphic Lizard). Selected body temperature. Herpetological Review, 44, 682–683.
  35. Lara-Reséndiz, R. A., Larraín-Barrios, B. C., Díaz de la Vega-Pérez, A. H., Méndez-de la Cruz, F. R. (2014) Calidad térmica a través de un gradiente altitudinal para una comunidad de lagartijas en la Sierra del Ajusco y el Pedregal de San Ángel, México. Revista Mexicana de Biodiversidad, 85, 885–897. http://dx.doi.org/10.7550/rmb.42249 DOI: https://doi.org/10.7550/rmb.42249
  36. Lee, J. C. (1980) Comparative thermal ecology of two lizards. Oecologia, 44, 171–176. http://dx.doi.org/10.1007/BF00572675 DOI: https://doi.org/10.1007/BF00572675
  37. Lemos-Espinal, J. A., Ballinger, R. E., Sarabia, S. S., Smith, G. R. (1997a) Thermal ecology of the lizard Sceloporus mucronatus mucronatus in Sierra del Ajusco, Mexico. The Southwestern Naturalist, 42, 344–347.
  38. Lemos-Espinal, J. A., Smith, G. R., Ballinger, R. E. (1997b) Thermal ecology of the lizard, Sceloporus gadoviae, in an arid tropical scrub forest. Journal of Arid Environment, 35, 311–319. https://dx.doi.org/10.1006/jare.1995.0150 DOI: https://doi.org/10.1006/jare.1995.0150
  39. Lemos-Espinal, J. A., Smith, G. R., Ballinger, R. E. (1998) Thermal ecology of the crevice-dwelling lizard, Xenosaurus newmanorum. Journal of Herpetology, 32, 141–144. https://dx.doi.org/10.2307/1565498 DOI: https://doi.org/10.2307/1565498
  40. Llewelyn, J., Shine, R., Webb, J. K. (2005) Thermal regimens and diel activity patterns of four species of small elapid snakes from south-eastern Australia. Australian Journal of Zoology, 53, 1–8. https://doi.org/10.1071/ZO04037 DOI: https://doi.org/10.1071/ZO04037
  41. López-Alcaide, S., Nakamura, M., Macip-Ríos, R., Martínez-Meyer, E. (2014) Does behavioural thermoregulation help pregnant Sceloporus adleri lizards in dealing with fast environmental temperature rise? The Herpetological Journal, 24, 41–47.
  42. Lymburner, A. H., Blouin‐Demers, G. (2020) Changes in thermal quality of the environment along an elevational gradient affect investment in thermoregulation by Yarrow’s spiny lizards. Journal of Zoology, 312, 133–143. https://doi.org/10.1111/jzo.12818 DOI: https://doi.org/10.1111/jzo.12818
  43. Mathies, T., Andrews, R. M. (1995) Thermal and reproductive biology of high and low elevation populations of the lizard Sceloporus scalaris: implications for the evolution of viviparity. Oecologia, 104, 101–111. https://doi.org/10.1007/BF00365568 DOI: https://doi.org/10.1007/BF00365568
  44. Mathies, T., Andrews, R. M. (1997) Influence of pregnancy on the thermal biology of the lizard, Sceloporus jarrovi: why do pregnant females exhibit low body temperatures? Functional Ecology, 11, 498–507. https://dx.doi.org/10.1046/j.1365-2435.1997.00119.x DOI: https://doi.org/10.1046/j.1365-2435.1997.00119.x
  45. Mayhew, W. W. (1968) Biology of desert amphibians and reptiles. Pp. 195–356. In: G. W. Brown Jr. (Ed.). Desert Biology: Special Topics on the Physical and Biological Aspects of Arid Regions. Vol. I. Academic Press, New York, USA. DOI: https://doi.org/10.1016/B978-1-4831-9868-2.50014-1
  46. McGinnis, S. M. (1966) Sceloporus occidentalis: preferred body temperature of the western fence lizard. Science, 152, 1090–1091. DOI: https://doi.org/10.1126/science.152.3725.1090
  47. Mondal, S., Rai, U. (2001) In vitro effect of temperature on phagocytic and cytotoxic activities of splenic phagocytes of the wall lizard, Hemidactylus flaviviridis. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 129, 391–398. https://doi.org/10.1016/S1095-6433(00)00356-1 DOI: https://doi.org/10.1016/S1095-6433(00)00356-1
  48. Mueller, C. F. (1970) Temperature acclimation in two species of Sceloporus. Herpetologica, 26, 83–85.
  49. Pérez-Quintero, J. C. (1994) Thermal ecology in a salt-marsh population of Chalcides chalcides. Resúmenes, Herpetología, III Congreso Luso-Español and VII Congreso Español, Badajoz, 19–23 September 1984.
  50. Pianka, E. R. (1973) The structure of lizard communities. Annual Review of Ecology and Systematics, 4, 53–74. https://dx.doi.org/10.1146/annurev.es.04.110173.000413 DOI: https://doi.org/10.1146/annurev.es.04.110173.000413
  51. Pianka, E. R., Vitt, L. J. (2003) Lizards: windows to the evolution of diversity. University of California Press, Berkeley, California, USA.
  52. Sinervo, B., Adolph, S. C. (1989) Thermal sensitivity of growth rate in hatchling Sceloporus lizards: environmental, behavioral and genetic aspects. Oecologia, 78, 411–419. https://dx.doi.org/10.1007/BF00379118 DOI: https://doi.org/10.1007/BF00379118
  53. Sinervo, B. (1990) Evolution of thermal physiology and growth rate between populations of the western fence lizard (Sceloporus occidentalis). Oecologia, 83, 228–237. https://doi.org/10.1007/BF00317757 DOI: https://doi.org/10.1007/BF00317757
  54. Smith, G. R., Ballinger, R. E. (1994) Thermal ecology of Sceloporus virgatus from southeastern Arizona, with comparison to Urosaurus ornatus. Journal of Herpetology, 28, 65–69. https://dx.doi.org/10.2307/1564682 DOI: https://doi.org/10.2307/1564682
  55. Stapley, J. (2006) Individual variation in preferred body temperature covaries with social behaviours and colour in male lizards. Journal of Thermal Biology, 31, 362–369. https://dx.doi.org/10.1016/j.jtherbio.2006.01.008 DOI: https://doi.org/10.1016/j.jtherbio.2006.01.008
  56. Stevenson, R. D., Peterson, C. R., Tsuji, J. S. (1985) The thermal dependence of locomotion, tongue flicking, digestion, and oxygen consumption in the wandering garter snake. Physiological Zoology, 58, 46–57. https://dx.doi.org/10.1086/physzool.58.1.30161219 DOI: https://doi.org/10.1086/physzool.58.1.30161219
  57. Tattersall, G. J., Milsom, W. K., Abe, A. S., Brito, S. P., Andrade, D. V. (2004) The thermogenesis of digestion in rattlesnakes. Journal of Experimental Biology, 207, 579–585. https://dx.doi.org/10.1242/jeb.00790 DOI: https://doi.org/10.1242/jeb.00790
  58. Van Damme, R., Bauwens, D., Verheyen, R. F. (1986) Selected body temperatures in the lizard Lacerta vivipara: variation within and between populations. Journal of Thermal Biology, 11, 219–222. https://dx.doi.org/10.1016/0306-4565(86)90006-9 DOI: https://doi.org/10.1016/0306-4565(86)90006-9
  59. Vial, J. L. (1984) Comparative field responses to diel and annual thermal regimes among Sceloporine lizards, with specific reference to Sceloporus malachiticus. Revista de Biología Tropical, 32, 1–9.
  60. Wilhoft, D. C., Anderson, J. D. (1960) Effect of acclimation on the preferred body temperature of the lizard, Sceloporus occidentalis. Science, 131, 610–611. https://dx.doi.org/10.1126/science.131.3400.610 DOI: https://doi.org/10.1126/science.131.3400.610
  61. Zamora-Camacho, F. J., Reguera, S., Moreno-Rueda, G. (2016) Thermoregulation in the lizard Psammodromus algirus along a 2200-m elevational gradient in Sierra Nevada (Spain). International Journal of Biometeorology, 60, 687–697. https://doi.org/10.1007/s00484-015-1063-1 DOI: https://doi.org/10.1007/s00484-015-1063-1