Vol. 35 (2019)

Spiders (Arachnida: Araneae) of the tropical mountain cloud forest from El Triunfo Biosphere Reserve, Mexico

Emmanuel Franco Campuzano Granados
El Colegio de la Frontera Sur, Unidad Tapachula, Carr. Antiguo Aeropuerto km. 2.5, Tapachula, Chiapas, C. P. 30700, México.
Guillermo Ibarra Núñez
El Colegio de la Frontera Sur, Unidad Tapachula, Chiapas
José Francisco Gómez Rodríguez
El Colegio de la Frontera Sur, Unidad Tapachula, Carr. Antiguo Aeropuerto km. 2.5, Tapachula, Chiapas, C. P. 30700, México.
Gabriela Guadalupe Angulo Ordoñes
El Colegio de la Frontera Sur, Unidad Tapachula, Carr. Antiguo Aeropuerto km. 2.5, Tapachula, Chiapas, C. P. 30700, México.

Publicado 2019-08-13

Cómo citar

Campuzano Granados, E. F., Ibarra Núñez, G., Gómez Rodríguez, J. F., & Angulo Ordoñes, G. G. (2019). Spiders (Arachnida: Araneae) of the tropical mountain cloud forest from El Triunfo Biosphere Reserve, Mexico. ACTA ZOOLÓGICA MEXICANA (N.S.), 35, 1-19. https://doi.org/10.21829/azm.2019.3502092


We carried out an intensive and systematized sampling of the spider fauna of the tropical mountain cloud forest (TMCF) in El Triunfo Biosphere Reserve, Chiapas, Mexico, in order to analyze their composition, species richness, abundance, and proportion of undescribed species, and to compare these results with those found in other TMCFs. We sampled ten plots in two seasons (dry and rainy) using different sampling techniques on two strata (ground and understory). A total of 7,432 specimens were collected corresponding to 28 families, 78 genera and 111 morphospecies. A high proportion of total species (58.6%) were undescribed species. For 11 species originally described from a single sex, we found the other sex. Five species and one genus were new records for the Mexican spider fauna. Understory stratum had higher numbers of species and individuals than ground stratum, and there was a high species turnover, with only 17% of the total species shared between strata. The spider fauna of El Triunfo shows similarities with other TMCFs (especially that on the same mountain range) concerning the identities of dominant and species-rich families, family and genera composition, the presence and relevance (in abundance or richness) of families that are uncommon in lowland tropical habitats (Linyphiidae and Theridiosomatidae), and in the high proportion of undescribed species. However, there is a high species turnover among sites (only 16% species shared), even at relatively short distances, that seems derived in part from the relative high proportions of endemic species. Our results suggest that high abundance of Theridiosomatidae and Linyphiidae, together with high species richness of this last family, could be used as conservation indicators for the Mexican TMCFs. The high numbers of undescribed species in the analyzed TMCFs, and their relatively high endemicity levels, support that TMCFs could be regarded as hotspots for the order Araneae.


  1. Agnarsson, I., Coddington, J. A., Kuntner, M. (2013) Systematics, pp. 58–11. In: Penney, D. (Ed.). Spider research in the 21st century, trends and perspectives. Siri Scientific Press, UK, Manchester.
  2. Alvarez-Padilla Laboratory (2017) Biodiversity of Araneomorphae from Mexico. Facultad de Ciencias, UNAM. Available at: www.unamfcaracnolab.com (accessed on May 2019).
  3. Bubb, P., May, I., Miles, L., Sayer, J. (2004) Cloud forest agenda. UNEP-WCMC. Cambridge, UK, 32 pp.
  4. Buchholz, S. (2010) Ground spider assemblages as indicators for habitat structure in inland sand ecosystems. Biodiversity and Conservation, 19, 2565–2595. https://doi.org/10.1007/s10531-010-9860-7
  5. Campuzano, E. F., Ibarra-Núñez, G. (2018) A new species of the spider genus Wirada (Araneae, Theridiidae) from Mexico, with taxonomic notes on the genus and a key to the species. Zootaxa, 4457 (3), 495–500. https://doi.org/10.11646/zootaxa.4457.3.13
  6. Campuzano, E. F., Ibarra-Núñez, G., Chamé-Vázquez, E. R., Montaño-Moreno, H. (2016) Understory spider assemblages from a cloud forest in Chiapas, Mexico, and their relationships to environmental variables. Arthropod-Plant Interactions, 10, 237–248. https://doi.org/10.1007/s11829-016-9426-z
  7. Cardoso, P. (2009) Standardization and optimization of arthropod inventories—the case of Iberian spiders. Biodiversity and Conservation, 18, 3949–3962. http://doi.org/10.1007/s10531-009-9690-7
  8. Chamé Vázquez, D. (2011) Arañas de suelo del bosque mesófilo de montaña, conservado y alterado en el Soconusco, Chiapas, México. Tesis de Licenciatura en Biología. Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas. 66 pp.
  9. Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., Ellison, A. M. (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84, 45–67. http://doi.org/10.1890/13-0133.1
  10. Chao, A., Ma, K. H., Hsieh, T. C., Chiu, C. H. (2016) Online Program SpadeR (Species-richness, Prediction And Diversity Estimation in R). Available at: http://chao.stat.nthu.edu.tw/wordpress/software_download (accessed on May 2019).
  11. Coddington, J. A. (1986) The genera of the spider family Theridiosomatidae. Smithsonian Contributions to Zoology, 422, 1–96. http://doi.org/10.5479/si.00810282.422
  12. Coddington, J. A., Levi, H. W. (1991) Systematics and evolution of spiders (Araneae). Annual Review of Ecology and Systematics, 22, 565–592.
  13. Coddington, J. A., Griswold, C. E., Silva Davila, D., Peñaranda, E., Larcher, S. F. (1991) Designing and testing sampling protocols to estimate biodiversity in tropical ecosystems, pp 44–46. In: Dudley, E. C. (Ed.). The unity of evolutionary biology, Vol. 1. Proceedings of the Fourth International Congress of Systematics and Evolutionary Biology. Dioscorides Press, Portland, Oregon, USA.
  14. Coddington, J. A., Agnarsson, I., Miller, J. A., Kuntner, M., Hormiga, G. (2009) Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. Journal of Animal Ecology, 78, 573–584. http://doi.org/10.1111/j.1365-2656.2009.01525.x
  15. Colwell, R., Coddington, J. (1994) Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society: B: Biological Sciences, 345, 101–118. https://doi.org/10.1098/rstb.1994.0091
  16. Comisión Nacional del Agua (CONAGUA) (2014) Archivos de la Dirección Técnica: Datos de la estación meteorológica automática El Triunfo. Centro Hidrometeorológico Regional “Tuxtla Gutiérrez”. Tuxtla Gutiérrez, Chiapas.
  17. Cristofoli, S., Mahy, G., Kekenbosch, R., Lambeets, K. (2010) Spider communities as evaluation tools for wet heathland restoration. Ecological Indicators, 10, 773–780. http://doi.org/10.1016/j.ecolind.2009.11.013.
  18. Doran, N. E., Kiernan, K., Swain, R., Richardson, A. M. M. (1999) Hickmania troglodytes, the Tasmanian cave spider, and its potential role in cave management. Journal of Insect Conservation, 3, 257–262.
  19. Foelix, R. F. (2011) Biology of spiders (3rd ed.). Oxford University Press. USA, New York, 419 pp.
  20. Gerlach, J., Samways, M., Pryke, J. (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. Journal of Insect Conservation, 17, 831–850. http://doi.org/10.1007/s10841-013-9565-9.
  21. Greenstone, M. H. (1984) Determinants of web spider species diversity: vegetation structural diversity vs. prey availability. Oecologia, 62 (3), 299–304. http://doi.org/10.1007/BF00384260
  22. Gual-Díaz, M., Mayer-Goyenechea, I. G. (2014) Anfibios en el bosque mesófilo de montaña en México, pp. 249–262. In: Gual-Díaz, M., Rendón-Correa, A. (Eds.). Bosques mesófilos de montaña de México: diversidad ecología y manejo. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, Ciudad de México.
  23. Gual-Díaz, M., Rendón-Correa, A. (2014) Bosques mesófilos de montaña de México: diversidad, ecología y manejo. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México, Ciudad de México, 352 pp.
  24. Halaj, J., Ross, D. W., Moldenke, A. R. (2000) Importance of habitat structure to the arthropod food-web in Douglas-fir canopies. Oikos, 90, 139–152. http://doi.org/10.1034/j.1600-0706.2000.900114.x
  25. Höfer, H., Brescovit, A. D. (2001) Species and guild structure of a Neotropical spider assemblage (Araneae) from Reserva Ducke, Amazonas, Brazil. Andrias, 15, 99–119.
  26. Horváth, R., Magura, T., Szinetár, C., Tóthmérész, B. (2009) Spiders are not less diverse in small and isolated grasslands, but less diverse in overgrazed grasslands: A field study (East Hungary, Nyírség). Agriculture, Ecosystems and Environment, 130, 16–22. http://doi.org/10.1016/j.agee.2008.11.011
  27. Ibarra-Núñez, G. (2013) Diversidad de las arañas (Arachnida: Araneae), pp. 191–196. In: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Ed.). La biodiversidad en Chiapas: Estudio de Estado. Vol. 2. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Gobierno del Estado de Chiapas, México, Ciudad de México.
  28. Ibarra-Núñez, G., García-Ballinas, J. A. (1998) Diversidad de tres familias de arañas tejedoras (Araneae: Araneidae, Tetragnathidae, Theridiidae) en cafetales del Soconusco, Chiapas, México. Folia Entomológica Mexicana, 102, 11–20.
  29. Ibarra-Núñez, G., Maya-Morales, J., Chamé-Vázquez, D. (2011) Las arañas del bosque mesófilo de montaña de la Reserva de la Biosfera Volcán Tacaná, Chiapas, México. Revista Mexicana de Biodiversidad, 82, 1183–1193.
  30. Jiménez, M. L. (1991) Araneae, pp. 83–101. In: Llorente, J., García, A., Gonzáles, E. (Eds.). Biodiversidad, taxonomía y biogeografía de artrópodos de México: hacia una síntesis de su conocimiento. Vol. 1. Instituto de Biología, Universidad Nacional Autónoma de México, México, Ciudad de México.
  31. Long, A. H., Heath, M. (1991) Flora of the El Triunfo Biosphere Reserve, Chiapas, México: a preliminary floristic inventory and the plant communities of polygon I. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Botánica, 62, 133–172.
  32. Magura, T., Horváth, R., Tóthmérész, B. (2010) Effects of urbanization on ground-dwelling spiders in forest patches, in Hungary. Landscape Ecology, 25, 621–629. http://doi.org/10.1007/s10980-009-9445-6
  33. Magurran, A. E. (2004) Measuring Biological Diversity. Blackwell Science. Oxford, UK, 256 pp.
  34. Malumbres-Olarte, J., Scharff, N., Pape, T., Coddington, J. A., Cardoso, P. (2017) Gauging megadiversity with optimized and standardized sampling protocols: A case for tropical forest spiders. Ecology and Evolution, 7, 494–506. http://doi.org/10.1002/ece3.2626
  35. Martínez-Meyer, E., Sosa-Escalante, J. E., Álvarez, F. (2014) El estudio de la biodiversidad en México: ¿una ruta con dirección? Revista Mexicana de Biodiversidad, 85, S1-S9.
  36. Maya-Morales, J., Ibarra-Núñez, G., León-Cortés, J. L., Infante, F. (2012) Understory spider diversity in two remnants of tropical montane cloud forest in Chiapas, Mexico. Journal of Insect Conservation, 16 (1), 25–38. https://doi.org/10.1007/s10841-011-9391-x
  37. Mayer-Goyenechea, I. G., Gual-Díaz, M. (2014) Reptiles en el bosque mesófilo de montaña en México, pp. 263–278. In: Gual-Díaz, M., Rendón-Correa, A. (Eds.). Bosques mesófilos de montaña de México: diversidad, ecología y manejo. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, Ciudad de México.
  38. Méndez-Castro, F. E., Rao, D. (2014) Spider diversity in epiphytes: Can shade coffee plantations promote the conservation of cloud forest assemblages? Biodiversity and Conservation, 23 (10), 2561–2577. https://doi.org/10.1007/s10531-014-0739-x
  39. Miller, J. A., Miller, J. H., Pham, D.-S., Beentjes, K. K. (2014) Cyberdiversity: improving the informatic value of diverse tropical arthropod inventories. PLoS ONE, 9 (12), e115750. http://dx.doi.org/10.1371/journal.pone.0115750
  40. Paquin, P., Duperré, N. (2003) Guide d’identification des Araignées (Aranae) du Québec. Fabreries, Supplement, 11, 1–251.
  41. Pérez, M., Tejada, C., Silva, E. (2010) Los bosques mesófilos de montaña en Chiapas: situación actual, diversidad y conservación. Universidad de Ciencias y Artes de Chiapas. México, Tuxtla Gutiérrez, 330 pp.
  42. Pozzi, S., Gonseth, Y., Hänggi, A. (1998) Evaluation de l’entretien des praires sèches du plateau occidental suisse par le biais de leurs peuplements arachnologiques (Arachnida: Araneae). Revue Suisse de Zoologie, 105, 465–485.
  43. R Development Core Team (2018) R: A language and environment for statistical computing. Version 3.5.0. Available at: https://www.R-project.org (accessed on May 2019).
  44. Rivera-Quiroz, F. A., Garcilazo-Cruz, U., Álvarez-Padilla, F. (2016) Spider cyberdiversity (Araneae: Araneomorphae) in an ecoturistic tropical forest fragment in Xilitla, Mexico. Revista Mexicana de Biodiversidad, 87, 1023–1032.
  45. Russell-Smith, A., Stork, N. E. (1994) Abundance and diversity of spiders from the canopy of tropical rainforests with particular reference to Sulawesi, Indonesia. Journal of Tropical Ecology, 10, 545–558.
  46. Rzedowski, J. (1996) Análisis preliminar de la flora vascular de los bosques mesófilos de montaña de México. Acta Botánica Mexicana, 35, 25–44.
  47. Sánchez-Ramos, G., Dirzo, R. (2014) El bosque mesófilo de montaña: un ecosistema amenazado, pp. 109–139. In: Gual-Díaz, M., Rendón-Correa, A. (Eds.). Bosques mesófilos de montaña de México: diversidad ecología y manejo. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, Ciudad de México.
  48. Scharff, N., Coddington, J. A., Griswold, C. E., Hormiga, G., Bjorn, P. de P. (2003) When to quit? Estimating spider species richness in a northern European deciduous forest. The Journal of Arachnology, 31, 246–273.
  49. Silva, D. (1992) Observations on the diversity and distribution of the spiders of Peruvian Montane Forests. Memorias Del Museo de Historia Natural UNMSM, 21, 31–37.
  50. Silva, D. (1996) Species composition and community structure of Peruvian rainforest spiders: A case study from a seasonally inundated forest along the Samiria river. Revue Suisse de Zoologie, Volume hors série, 597–610.
  51. Silva, D., Coddington, J. A. (1996) Spiders of Pakitza (Madre de Dios, Peru): species richness and notes on community structure, pp. 253–311. In: Wilson D. E., Sandoval, A. (Eds.). Manu: The biodiversity of southeastern Peru. Smithsonian Institution, USA, Washington.
  52. Sorensen, L. L. (2003) Stratification of the spider fauna in a Tanzanian forest, pp. 92–101. In: Basset, Y., Novotny, V., Miller, S. E., Kitching, R. L. (Eds.). Arthropods of tropical forests: spatio-temporal dynamics and resource use in the canopy. Cambridge University Press, UK, Cambridge
  53. Sorensen, L. L. (2004) Composition and diversity of the spider fauna in the canopy of a montane forest in Tanzania. Biodiversity and Conservation, 13, 437–452. https://doi.org/10.1023/B:BIOC.0000006510.49496.1e
  54. Sorensen, L. L., Coddington, J. A., Scharff, N. (2002) Inventorying and estimating sub-canopy spider diversity using semi-quantitative sampling methods in an Afromontane forest. Environmental Entomology, 31, 319–330. http://doi.org/10.1603/0046-225X-31.2.319
  55. Ubick, D., Paquin, P., Cushing, P. E., Roth, V. (2017) Spiders of North America: An Identification Manual. American Arachnological Society. USA, Keene, 377 pp.
  56. Williams-Linera, G. (1991) Nota sobre la estructura del estrato arbóreo del bosque mesófilo de montaña en los alrededores del campamento “El Triunfo”, Chiapas. Acta Botánica Mexicana, 13, 1–7.
  57. World Spider Catalog (2019) World Spider Catalog. Natural History Museum Bern. Available at: http://wsc.nmbe.ch, version 20.0 (accessed on May 2019).
  58. Yanoviak, S. P., Kragh, G., Nadkarni, N. M. (2003) Spider assemblages in Costa Rican cloud forests: Effects of forest level and forest age. Studies on Neotropical Fauna and Environment, 38 (2), 145–154. http://doi.org/10.1076/snfe.