Bolaños-García, Rodríguez-Estrella, and Guzmán-Cornejo: Ectoparasites associated with a Great Horned Owl nesting (Aves: Strigidae) population in fragmented landscape of Baja California peninsula, Mexico



INTRODUCTION

Ectoparasites are important in avian host populations because they can affect health condition, regulate population dynamics and alter interspecific competition (Proctor & Owens, 2000; Hudson et al., 2006; Jephcott et al., 2016). Ectoparasites include different groups of arthropods such as, mites, ticks, fleas, flies, hemipterans and lice (anoplurans); however, there are other groups such as feather mites, which include many species considered as commensal, that are also important for birds, because they can enhance their health condition indirectly eliminating skin remains (Blanco et al., 2001; Proctor, 2003). Parasitism is now considered a serious threat for several species affecting adults and nestlings´ health condition and survival (Whiteman & Parker, 2004a; Skoruppa et al., 2006; Liébana et al., 2011), modifying the population dynamics of wild birds (Price et al., 2003; Patz et al., 2004; Collinge, 2009), theirs patterns of distribution (Loye & Carroll, 1995) and reproductive parameters of their hosts (Merino & Potti, 1995; Magalhães et al., 2014).

Studies of ectoparasites in wild raptors are scarce, mainly focusing in looking for the presence of parasites in rehabilitation centers (Pérez et al., 1996; Morishita et al., 2001; Miller et al., 2004, González-Acuña et al., 2006; Oliveira et al., 2011) and scientific collections (Pfaffenberger & Rosero, 1984; Hunter et al., 1994; González-Acuña et al., 2006; Bush et al., 2012). Only few studies have focused on ectoparasites in raptors at natural environments (Hunter et al., 1994; Morishita et al., 1998; Rohner et al., 2000; Whiteman & Parker, 2004a, 2004b; Scott et al., 2017). In nocturnal raptors few studies have been made on ectoparasites prevalence and diversity (Rohner et al., 2000; Morishita et al., 2001). Known ectoparasites in the Great Horned Owl Bubo virgininanus include bugs (Usinger, 1966; Wilson & Oliver, 1978), lice (Kellogg & Chapman, 1902; Malcomson, 1960; Emerson, 1961; Price & Beer, 1963a; Carriker, 1966; Pfaffenberger & Rosero, 1984; Morishita et al., 2001), mites (Schulz et al., 1989) and black flies (Hunter et al., 1997; Rohner et al., 2000; Morishita et al., 2001). Most studies only show records of presences in North America (USA, Canada), including boreal forest, alpine areas, tundra, forest, woodland and grassland. For example, a juvenile Great Horned Owl was found having hyperkeratosis caused by the species mites Knemicokoptes mutans (Schulz et al., 1989); also, three species of chewing lice (Phthiraptera): Strigiphilus oculatus, Strigiphilus acutifrons and Kurodaia edwardsi (Emerson, 1961), and six species of black flies (Diptera) have been reported on this owl species (Rohner et al., 2000). However, to the best our knowledge no studies have investigated the infestation levels of ectoparasites associated with the Great Horned Owls at arid environments and nor in fragmented landscapes.

The Great Horned Owl is the largest North American Owl (length 46-63 cm, average weight 1,304g males, 1,706g females). This owl is widely distributed, from Canada to Chile, being present in almost all kind of ecosystems including croplands (Houston et al., 1998; Artuso et al., 2013). The Great Horned Owl is a top-order predator that has declined in North America about 33% between 1966-2015 mainly due to habitat loss and prey availability declines; other causes are secondary poisoning by accumulation of pesticides from prey, collisions with vehicles and electrocutions; parasitism in not included as a threat (Artuso et al., 2013). In México, this owl is a resident species and is distributed throughout all the country, except in the humid southeast region (Howell & Webb, 1995). Here, we present an evaluation of species richness, prevalence and intensity of ectoparasites in Great Horned Owl fledglings in a fragmented arid landscape, a modified ecosystem for which information on ectoparasites community does not exist. Information on the ectoparasites community in birds at human transformed habitats is almost non-existent. This baseline information could be useful in the future to document the impacts that land use changes and habitat fragmentation can produce in ectoparasites species of a raptor, the Great Horned owl.

METHOD

Study Area. Our study was performed in fragmented area in south Baja California peninsula, México (25° 05’ N, 111° 41’W) (Fig. 1). The 1200 km2 study area is highly fragmented with only eight percent of native vegetation remaining (Munguia-Vega et al., 2012). This is a valley with an altitude of less than 100 m a.s.l. (Cardona et al., 2004). Desert fragments are inserted into an agricultural matrix with some livestock activity (Barret, 1974).

The native vegetation is typical of the Sonoran Desert region (Wiggins, 1980; Rebman & Roberts, 2012), with sarcocaulescent scrub vegetation composed predominantly by giant cardon cactus (Pachycereus pringlei), organpipe cactus (Sternocereus thurberi), mesquite (Prosopis glandulosa), torote (Bursera microphylla), palo verde (Cerdidium floridum), and Adam´s tree (Fouquieria spp.). The fragments are surrounded by agricultural areas where cultivated crops were sorghum, safflower, vegetables, alfalfa, potatoes, and maize and orange fruit trees too. Climate is dry, with summer rains and a mean annual temperature of 24 °C, with a maximum of 40 °C. Mean annual precipitation is around 140 mm (Cardona et al., 2004).

Sampling collection. Great Horned owl nests were located between January and May 2015 and 2017. Although we found active nests in both conditions, fragmented and non-fragmented (continuous) areas, predation on chicks was very high in continuous areas; thus, we were unable to get enough information in this study in non-fragmented condition (Bolaños-García & Rodríguez-Estrella, submitted). For this reason, statistical analysis was not performed comparing fragmented versus non-fragmented area because sample size was very low. We comment on this information later.

Figure 1

Study area with location of fragments and nesting sites in Santo Domingo Valley, Baja California Sur, Mexico.

2448-8445-azm-34-e3412142-gf1.jpg

Sampling of parasites from owls was done when they were nestlings approximately 40 days old, before fledged. The fledglings were put over a clean white surface and carefully examined for five minutes, the whole plumage was profusely and systematically surveyed to collect all possible ectoparasites (following Clayton & Drown, 2001). For feather mites, each wing was fully extended and reviewed for 30 seconds. Subsequently, brushing was performed for 60 seconds to collect skin mites (Clayton & Walther, 1997). Louse flies, were collected by hand following a standard method described in Young et al. (1993). All ectoparasites, feathers and remnants of skin detached from fledglings were fixed and conserved in vials containing ethanol 90% until processing under stereoscope in CIBNOR (Centro de Investigaciones Biológicas del Noroeste) laboratories.

The lice, bugs and fleas were cleared for about 18-48 hours in KOH 10% and put in distilled water. Following dehydration in a graded alcohol series, the specimens were mounted on slides in Canada balsam (Palma, 1978; Guzmán-Cornejo et al., 2012). Feather mites were cleared in lactophenol and mounted in Hoyer´s medium. Louse flies, were preserved in vials with ethanol.

All ectoparasites were identified at the highest taxonomic level of resolution possible; using specialized keys for each group of arthropod (Ewing & Fox, 1943; Price & Beer, 1963a; Price & Beer, 1963b; Clay, 1969; 1970; Price & Hellenthal, 1988; Lewis, 2000; Acosta & Morrone, 2003; Price et al., 2003; Wood, 2010; Santos et al., 2014). For bugs and feather mites, a specialist for each taxon was consulted. A light microscope Olympus® BX50 with differential interference contrast illumination was used to observe morphological characteristics. Photomicrographs were taken using a digital camera Olympus® Model PROVIS AX 70 with digital capture 5mp camera media cybernetic, with a stereoscopic microscope ZEISS® Model Stemi SV digital capture 24 mp Canon® EOS Rebel 7Ti camera and using Scanning electron micrograph.

Species richness was determined by total number of species of ectoparasites occurring on the host, prevalence and mean intensity (± standard error) were calculated according with Bush et al. (1997). Finally, to determine the proportion of each taxa in the parasite community Shannon and Weaner diversity index H’ was estimated.

A spatial autocorrelation analysis (Moran´s I) was performed to determine whether the proximity of Great Horned owl’ nests to each other within the study area influence the prevalence and the abundance of ectoparasites. The spatial autocorrelation helps to understand the degree to which one parasitized nest is similar to another nearby nest. We used the Moran´s I statistic to measure spatial autocorrelation and used the K-Nearest Neighbor with order 4, (GeoDa 1.12.1.59 software, 2017). While a positive Moran´s I indicate data is clustered, a negative Moran´s I implies data is dispersed. The absence of autocorrelation implies data are independent.

RESULTS

A total of 34 owl fledglings were sampled. About 61% (n= 22) had at least one species of ectoparasite; 13 fledglings with ectoparasites were raised from 10 nests located in fragments and five from three nests on trees in cultivated area (farms). We decided that a nest with two fledglings located at 0.7 km from the edge of fragmented area into continue vegetation should be considered in the edge of fragmented area, given the short distance from the influence of cultivate area. Only one nest with two fledglings was found and sampled in non-fragmented natural area and was excluded from statistical analysis. Most ectoparasites were blood-feeding species (Table 1).

Table 1

Ectoparasites associated with the Great Horned Owl (Bubo virginianus) fledglings in fragmented arid desert of south Baja California peninsula, México. In bold, the highest prevalence and mean intensity. SE: standard error.

INSECTA SPECIES PH TP % MI ± SE
Phthiraptera Colpocephalum pectinatum Osborn, 1902 7 29 20.5 4.8 ± 0.41
Geomydoecus telli Price & Hellenthal, 1988 1 5 2.9 5 ± 0.15
Neohaematopinus sciurinus (Mjöberg, 1910) 1 1 2.9 1 ± 0.03
Hemiptera Cimicidae gen. sp. 1 1 2.9 1 ± 0.03
Siphonaptera Orchopea sp. 1 1 2.9 1 ± 0.03
Diptera Icosta americana (Leach 1817) 9 12 26.4 1.3 ± 0.11
ACARI
Mesostigmata Ornithonysus sylviarum (Canestrini & Fanzago, 1877) 2 25 5.8 12.5 ± 0.53
Acariformes Glaucalges cf. attenuatus (Buchholz, 1869) 3 7 8.8 2.3 ± 0.14

[i] PH= Parasitized hosts. TP= Total of parasites, %= Prevalence, MI= Mean Intensity

A total of 81 individual epizoic species were collected, 69 hematophagous and 12 commensals. Eight different taxa were recorded, the epizoic species diversity was H’ = 1.56. Hippoboscidae flies were present in 26% of fledglings while Phthiraptera lice (Amblycera) and Mesostigmata mites had a prevalence of 23% and 6%, respectively. Others were rare, as Siphonaptera and Hemiptera (Table 1, Fig. 2). Of these ectoparasites species, six were blood-feeding species: Diptera (Icosta americana); Hemiptera (Cimicidae gen. sp.); Phthiraptera (Neohaematopinus sciurinus, Colpocephalum pectinatum); Siphonaptera (Orchopea sp.) and Mesostigmata (Ornihtonysus sylviarum). Hippoboscidae flies I. americana had the highest prevalence 26.5% in fledglings, while the chewing lice C. pectinatum had a prevalence of 20.5. For N. sciurinus, Orchopea sp. and Cimicidae gen. sp. only one specimen was obtained (Table 1, Fig. 2).

Figure 2

Percentage of parasitized of Great Horned Owl fledglings in scrub desert of Baja California peninsula. C p, Colpocephalum pectinatum; G t, Geomydoecus telli; N s, Neohaematopinus sciurinus; O, Ornihtonysus sylviarum; G, Glaucalges cf. attenuatus; C, Cimicidae gen. sp.; I a, Icosta americana; Orc, Orchopea sp.

2448-8445-azm-34-e3412142-gf2.jpg

We recorded O. sylviarum with a low prevalence (5.8%) but with the highest mean intensity (12.5) (Table 1). Adults of lice G. telli and N. sciurinus were unexpected for Great Horned Owl fledglings because these lice have been recorded parasitizing only rodents. A greater number of adult females was registered in all species of ectoparasites, except for chewing lice Geomydoecus telli, with more adult males. Feather mites Glaucalges spp. were also recorded but were uncommon.

A severe infestation was recorded in four fledglings of two nests, two from fragmented area parasitized by the chewing louse C. pectinatum, and the other two fledglings from the nest close to the edge of crops (0.7 km), parasitized by a mite Ornihtonysus sylviarum (Table 1, Fig. 3).

No spatial autocorrelation existed for the ectoparasites abundance and distance among nests (Moran´s I = 0.010; z = 0.16, P > 0.05; Fig. 4). Thus, the abundance of ectoparasites in one nest is independent of their abundance in neighbor nests.

DISCUSSION

An infestation by ectoparasites may result in the reduction of the host's ability to defend itself and compromises the health of young chicks (Collinge, 2009; Murillo & Mullens, 2017) resulting in stunted growth (Lehane, 2005) and may severely affect the body condition (Christensen et al., 2015). Ectoparasites affect the population dynamics of hosts, so it is important to determine their prevalence mean intensity and species diversity. However, these data on ectoparasites are scarce for owls and generally are only-presence records or have been obtained from small sample sizes (Hunter et al., 1994; Skoruppa et al., 2006). The ectoparasites of the Great Horned Owl are poorly known, and most records are from sporadic observations. This is the first study of the prevalence and intensity of ectoparasites in Great Horned Owl fledglings.

Figure 3

Ectoparasites found on Great Horned Owl nestlings; a) Colpocephalum pectinatum adult male ventral view, b) Geomidoecus telli adult male ventral view, c) Neohaematopinus sciurinus adult female ventral view, d) Ornihtonysus sylviarum adult ventral view, e) feather mite, Glaucalges cf. attenuates, f) Cimicidae gen. sp., nymph instars, g) louse flies Icosta americana, adult female dorsal view, h) Orchopea sp. adult female side view.

2448-8445-azm-34-e3412142-gf3.jpg

Figure 4

Spatial autocorrelation analysis between ectoparasites abundance (Abun_Ect) and distance among Great Horned Owl active nests (Dis_Nid (m)).

2448-8445-azm-34-e3412142-gf4.jpg

The occurrence of parasites is determined by environmental factors, some related to the host and others to the biology of parasites (Keesing et al., 2010). It has been also found that the variations in the level of infestation seem to be correlated with temperature and humidity, climate and age of hosts (Young et al., 1993; Skoruppa et al., 2006). For instance, prevalence of parasites and intensity of infestation in wild animals may be affected by habitat loss and fragmentation (Collinge, 2009), because host individuals concentrate in smaller areas than in continuous habitat, then favoring the exchange and transmission between hosts, and survival of ectoparasites as well (Greer & Collins, 2008; Lüdtke et al., 2013; Webstern et al., 2014).

Not information exists to compare the levels of infestation of ectoparasites (e.g. prevalence and mean intensity) in the Great Horned Owl, and certainly no for fragmented desert. In our study, we were unable to determine if habitat fragmentation promotes an increase in species richness and abundance of ectoparasites in the Great Horned Owl because almost all nestlings were predated in non-fragmented condition, thus comparisons were not possible.

When comparing our results with other studies on raptors we found a high number of ectoparasites species in our owl population in fragmented habitat within a desert environment, in contrast with all other raptor species for which information exists and that have a small number of ectoparasites species and most of them with a relatively low prevalence as we will show below. Nevertheless, raptors under certain circumstances have higher ectoparasites prevalence. For example, the prevalence of C. pectinatum in Burrowing Owl Athene cunicularia was 50% and the mean intensity was 9.0 (Pfaffenberger & Wilson, 1985) much higher than in our study. It has been proposed that differences in prevalence and mean intensity may be age-related or due to habitat conditions (Moyer et al., 2002); in the A. cunicularia study all birds were adults, while in our work all hosts were fledglings. So, fledglings should have more ectoparasites than adults but when comparing with the results we found for the Great Horned Owl population, this hypothesis is contradicted. Thus, other explanations should be considered, such as differences in habitat conditions. In the study of A. cunicularia, habitat was plains and prairies dominated by short grass surrounded by agricultural areas. In wintering Burrowing Owl (Athene c. hypugaea) adults, a low prevalence infestation of two lice species (C. pectinatum and Strigiphilus speotyti) was recorded (27%). Authors propose that the low lice prevalence and abundance is due to low temperatures during the seasons of the year because during breeding season birds are more susceptible (Skoruppa et al., 2006). However, habitat could have a strong influence on these prevalences because most birds were located in agriculture areas and few in natural grassland (Skoruppa et al., 2006).

On the other hand, the host age seems to influence the ectoparasites prevalence too. For example, in natural environments of northwest California (e.g. forests), the prevalence of hippoboscid flies (Ornithomya anchineuria and I. americana) was greater in adults than in juveniles of Northern Spotted Owl, which however were parasitized in only 7% of individuals by these flies, with mean intensity of 2.4 (Young et al., 1993). The abundance of I. americana has been found to be regulated by climate because the pupa phase is more resistant to cold than to warm climates (Bennet, 1961; Young et al., 1993). Thus, the low mean intensity of I. costa in hosts at the Baja California peninsula arid desert could be due to the high temperatures from spring to fall seasons. In fact, a low prevalence of a louse fly species (Microlynchia pusilla 1%, n = 401 birds) was found in birds of Baja California peninsula and one of the factors proposed was climatic conditions (Tella et al., 2000).

Hunter (1994) found two species of hippoboscids (Ornithoica vicina and I. americana) in Mexican Spotted Owl from mixed evergreen forest and montane forest with a prevalence of 33% and mean intensity of 4.2. In American Kestrel Falco sparverius chicks monitored in nest box, Carnus hemapterus (Diptera, Carnidae) was detected with a high prevalence (up to 50%) and moderate intensity of infestation, 2.5 (Dawson & Bortolotii, 1997). Carnus hemapterus was also observed in Barn Owl (Tyto alba) up to four weeks of age, but it was not detected on older nestlings or adult owls (Kirkpratrick & Colvin, 1989). In other birds, like ovenbird nestlings in mixed coniferous forest in Minnesota, a prevalence of 21% de infestation in nests by Bird Blow flies Trypocalliphora braueri was recorded (Streby et al., 2009). Thus, prevalence and mean intensity of parasites may be due to vegetation type, climatic conditions and man-made disturbances due to land use changes and human activity.

According to our spatial autocorrelation analysis our findings in fragmented condition do not support the idea that prevalence of parasites and mean parasite intensity in nests should be correlated to neighbor nests level of infestation. Habitat fragmentation (e.g. environmental factor) has been found that promotes a greater aggregation of hosts, then transmission of ectoparasites can increase (Bradley & Altizer, 2007; Webstern et al., 2014). We did not find a relationship between the abundance of ectoparasites in one nest and its abundance in neighbor nests. It could be certainly possible that habitat heterogeneity (diverse crops, ranch, farms and livestock) promotes the high species diversity we found in fragmented landscape.

Studies have shown that lice species have a high degree of specificity to their hosts (Price & Beer, 1963a; Morishita et al., 2001). Most genera of the Phthiraptera are restricted to particular taxa and some louse species parasitize only one host species (Clayton et al., 2008). Furthermore, lice might be the ectoparasites with the highest prevalence in raptors (Peréz et al., 1996). In our study, the chewing lice C. pectinatum, was clearly associated with nestlings in the study area, having a high prevalence and the highest mean parasite intensity of all ectoparasites in fragmented area. Also, this chewing louse was present in the two owl nestlings we sample in continuous vegetation area. Previous records of C. pectinatum in owl species were in A. cunicularia (Pfaffenberger & Wilson, 1985), Athene cunicularia hypugaea, Athene brama brama, Otus bakkamoena (Price & Beer, 1963a; Skoruppa et al., 2006) and A. noctua (Rak et al., 1975), Otus watsonii and Tyto alba (Price et al., 2003) but not in Great Horned Owls (Schulz et al., 1989; Price et al., 2003). Thus, the Great Horned Owl is a new host species for this ectoparasite.

Glaucalges attenuates, is a feather mite species reported for the Great Horned Owl and other owl species (Dabert et al., 2008). This mite is a permanent and obligatory symbionts-parasite that spends their entire life cycle on the bird host. These mites are commensals, neither harming nor benefiting the host but they feed on secretions that the host spreads on the feather while grooming (Galloway et al., 2014).

Colpocephalum pectinatum is a blood-feeding louse species that can be vector of endoparasites (Whiteman & Parker, 2004b). It is then very likely that this louse may decrease the body condition of Great horned owl fledglings that have moderate to high infestation levels but also can transmit endoparasites and pathogens which in turn may affect their survival.

The family Macronyssidae includes hematophagous mites that are parasites of birds and may be vectors of pathogens (Proctor & Ownes, 2000). The mites of most Strigiforms species are unknown, but these birds can host a diverse community of pathogenic and feather mites (Philips, 2000). Mites can cause irritation, severe dermatitis and anemia. We recorded a hematophagous mite Ornithonysus sylviarum in high numbers but with a low prevalence, two fledglings presented a severe infestation in the whole body. Due to its fast reproduction this mite can quickly infest a host (McCulloch & Owen, 2012). There are reports of cases in which this species may reach up to 50,000 mites per bird (McCulloch & Owen, 2012; Murillo & Mullens, 2017), high infestation levels can cause up to 6% blood loss per day (DeLoach & DeVaney, 1981). There is a suspected role of O. sylviarum mites in the spread of the Avian paramyxovirus type 1 Newcastle disease and Saint-Louis encephalitis virus (Flavirus) (Valiente Moro et al., 2005).

The louse fly I. americana is the most common Hippoboscidae in Strigidae (Maa, 1969). This hematophagous louse fly can affect health condition of birds (Wood, 2010), is a vector of Western Nile virus (WNV) in raptors of North America (Farajollahi et al., 2005; Philips, 2007), and has been also recognized as a threat for nestlings due to their role as a vector of diseases (Proudfoot et al., 2006). The louse fly had the highest prevalence in Great Horned Owl nestlings in this study, so it is important to determine the potential effects of louse fly in this owl species.

Although in our work the prevalence of the hemipteran (Cimicidae gen. sp.) was very low, it has been found that the presence of large numbers of this kind of bugs (hematophagous) in nests can cause young birds to leave the infested nest prematurely (Grubb, 1986), nestlings die or the nest is abandoned during hatching by parents e.g. Falco mexicanus and Buteo jamaicensis (Grubb, 1986; Wilson & Oliver, 1978).

We recorded several ectoparasites species in Great Horned Owl nestlings, almost fledglings, in the fragmented area. The high ectoparasites richness species and diversity can indicate a risk to the health condition of this owl species. Birds living in arid environments tend to have fewer ectoparasites than similar birds in humid environments (Moyer et al., 2002; Clayton et al., 2008), e.g. the prevalence of lice for Mourning dove and Feral pigeon was lower in Arizona (3% and 47%) than in Texas (79% and 100%) respectively (Moyer et al., 2002). The abundance of lice showed the same trend.

The fragmented area with natural vegetation patches inserted into a matrix of crop fields, may favor an increase of diversity of ectoparasites because of habitat heterogeneity. Further studies are needed to evaluate the affectations in health condition of Great Horned Owl populations in this highly fragmented system. For instance, we found that the four fledglings showing severe infestations (>1000 lice or mites) were from nests located in highly degraded habitat containing livestock, garbage dumps, roads, dead animals and reduced cover vegetation. On the other hand, the use of chlorinated hydrocarbon insecticides in the agricultural zone (Jiménez et al., 2005) to control plant pests possibly have had an indirect effect on ectoparasites survival, this is the reason of the low prevalence of some species.

The probability transmission of ectoparasites between raptor species can be high in desert fragmented areas during reproduction, particularly when birds do not build their own nest so they use nests that were used by other birds which can be infected previously by ectoparasites remaining in these sites even when the host left the nest, especially when there is a limited availability of spaces for nesting in patches of highly fragmented systems (Phillips & Dindal, 1977; Collinge, 2009). Also, adults can transmit ectoparasites when contacts occur in the nest. On the other hand, it is important to remark that the flea, the chewing louse and the sucking lice (Anoplura) are strictly parasites of mammals (Price & Hellenthal, 1988; Durden & Musser, 1994; Lewis, 2000). The transmission of these ectoparasites to the owl fledglings into nests occurs when mammals are taken by adult birds and deliver prey to the nest; owls have been found infested with rodent fleas (Jellison, 1939; Rothschild & Clay, 1957). The bug inhabits into the nests (especially when nests are old) and walk or climb towards the host to feed on blood. Bugs of this kind can parasite birds in nests like the Great Horned Owl because this species does not replenish the spays of green material to avoid and eliminate parasites because the owl does not build nests (Wimberger, 1984).

We propose studies should be done to determine if pathogens are present in Great Horned Owls in the fragmented arid area and their effects. If so, further research on the parasites in top-order predator owls should be done to better understand the host-parasite interactions and how habitat fragmentation influences the interactions and the host survival.

Acknowledgments.

We thank the Laboratorio de Acarología, Facultad de Ciencias, UNAM and Laboratorio de Ecología Animal, CIBNOR for the use of infrastructure. We thank Dr. H. U. Brailovsky Alperowitz of Instituto de Biología, UNAM for identifying the bug and to Dr. R. Acosta-Gutiérrez from Departamento de Biología Evolutiva, UNAM for confirming the genus of the flea and Griselda Montiel Parra for their aid in feather mite determination. M.F.P. Ana Isabel Bieler Antolin from Laboratorio de Microcine, Facultad de Ciencias, UNAM for edition of images of ectoparasites. We thank to José Abelino Cota Castro, T. Lopez and Dr. J. F. Pio Leon for field assistance. We thank to Laura L. Del Castillo M. for laboratory assistance. RBG received a doctoral fellowship from CONACyT Mexico (169651). This work was supported by a SEP-CONACYT México grant (R.R.E. 155956). RRE received a CONACyT sabbatical grant during the writing of this manuscript, at the University of Arizona.

LITERATURE CITED

1 

Acosta, R., Morrone, J. J. (2003) Clave ilustrada para la identificación de los taxones supraespecíficos de Siphonaptera de México. Acta Zoológica Mexicana (nueva serie), 89, 39−53.

R. Acosta J. J. Morrone 2003Clave ilustrada para la identificación de los taxones supraespecíficos de Siphonaptera de MéxicoActa Zoológica Mexicana8939−5339−53

2 

Artuso, C., Houston, C. S., Smith, D. G., Rohner, C. (2013) Great Horned Owl (Bubo virginianus), version 2.0. In: P.G. Rodewald (Ed). The Birds of North America, Cornell Lab of Ornithology, Ithaca, New York, USA. https://doi.org/10.2173/bna.372

C. Artuso C. S. Houston D. G. Smith C. Rohner 2013Great Horned Owl (Bubo virginianus), version 2.0. P.G. Rodewald The Birds of North AmericaCornell Lab of OrnithologyIthaca, New York, USA10.2173/bna.372

3 

Barret, E. M. (1974) Colonization of the Santo Domingo Valley. Annals of the Association of American Geographers, 64, 34−53. https://doi.org/10.1111/j.1467-8306.1974.tb00953.x

E. M. Barret 1974Colonization of the Santo Domingo ValleyAnnals of the Association of American Geographers6434−5334−5310.1111/j.1467-8306.1974.tb00953.x

4 

Bennet, J. C. (1961) On three species of Hippoboscidae (Diptera) on birds in Ontario. Canadian Journal of Zoology, 39, 379−406.

J. C. Bennet 1961On three species of Hippoboscidae (Diptera) on birds in OntarioCanadian Journal of Zoology39379−406379−406

5 

Blanco, G. J., Tella, L., Potti, J., Baz, A. (2001) Feather mites on birds: costs of parasitism or conditional outcomes? Journal of Avian Biology, 32, 271−274. doi: 10.1111/j.0908-8857.2001.320310.x

G. J. Blanco L. Tella J. Potti A. Baz 2001Feather mites on birds: costs of parasitism or conditional outcomes?Journal of Avian Biology32271−274271−27410.1111/j.0908-8857.2001.320310.x

6 

Bolaños-García, R., Rodríguez-Estrella R. (2018) How habitat fragmentation modifies productivity of a top-order predator?: A study on Great Horned Owl in Baja California peninsula. Journal of Raptor Research, submitted.

R. Bolaños-García R. Rodríguez-Estrella 2018How habitat fragmentation modifies productivity of a top-order predator?: A study on Great Horned Owl in Baja California peninsulaJournal of Raptor Research

7 

Bradley, C. A., Altizer, S. (2007) Urbanization and the ecology of wildlife diseases. Trends in Ecology and Evolution, 22, 95−102. doi:10.1016/j.tree.2006.11.001

C. A. Bradley S. Altizer 2007Urbanization and the ecology of wildlife diseasesTrends in Ecology and Evolution2295−10295−10210.1016/j.tree.2006.11.001

8 

Bush, A. O., Lafferty, K. D., Lotz, J. M., Shostak, A. W. (1997) Parasitology meets ecology on its own terms: Margolis et al., revisited. Journal of Parasitology, 83, 575−583.

A. O. Bush K. D. Lafferty J. M. Lotz A. W. Shostak 1997Parasitology meets ecology on its own terms: Margolis et al.Journal of Parasitology83575−583575−583

9 

Bush, S. E., Villa, S. M., Bover, T. J., Brewer, D., Belthoff, J. R. (2012) Influence of bill and foot morphology on the ectoparasites of Barn Owls. Journal of Parasitology , 98, 256−261. doi.org/10.1645/GE-2888.1

S. E. Bush S. M. Villa T. J. Bover D. Brewer J. R. Belthoff 2012Influence of bill and foot morphology on the ectoparasites of Barn OwlsJournal of Parasitology98256−261256−26110.1645/GE-2888.1

10 

Cardona, A., Carrillo-Rivera, J. J., Huizar-Alvarez, R., Graniel-Castro, E. (2004) Salinization in coastal aquifers of arid zones: an example from Santo Domingo, Baja California Sur, Mexico. Environmental Geology, 45, 350−366. doi: 10.1007/s00254-003-0874-2

A. Cardona J. J. Carrillo-Rivera R. Huizar-Alvarez E. Graniel-Castro 2004Salinization in coastal aquifers of arid zones: an example from Santo Domingo, Baja California Sur, MexicoEnvironmental Geology45350−366350−36610.1007/s00254-003-0874-2

11 

Carriker, Jr. M. A. (1966) New Species and Records of Mallophaga (Insecta) from Neotropical Owls (Strigiformes). The American Midland Naturalist, 76, 74−99.

Jr. M. A. Carriker 1966New Species and Records of Mallophaga (Insecta) from Neotropical Owls (Strigiformes)The American Midland Naturalist7674−9974−99

12 

Christensen, N. D., Skirnisson, K., Nielsen, O. K. (2015) The parasite fauna of the Gyrfalcon (Falco rusticolus) in Iceland. Journal of Wildlife Diseases, 51, 929−933. doi: 10.7589/2015-01-022

N. D. Christensen K. Skirnisson O. K. Nielsen 2015The parasite fauna of the Gyrfalcon (Falco rusticolus) in IcelandJournal of Wildlife Diseases51929−933929−93310.7589/2015-01-022

13 

Clay, T. A. (1969) Key to the genera of the Menoponidae (Amblycera: Mallophaga: Insecta). Bulletin of the British Museum Natural History (Entomology), 24, 1−26.

T. A. Clay 1969Key to the genera of the Menoponidae (Amblycera: Mallophaga: Insecta)Bulletin of the British Museum Natural History (Entomology)241−261−26

14 

Clay, T. A. (1970) The Amblycera (Phthiraptera: Insecta). Bulletin of the British Museum Natural History (Entomology) , 25, 73−98.

T. A. Clay 1970The Amblycera (Phthiraptera: Insecta)Bulletin of the British Museum Natural History (Entomology)2573−9873−98

15 

Clayton, D. H., Drown, D. M. (2001) Critical evaluation of five methods for quantifying chewing lice (Insecta: Phthiraptera). Journal of Parasitology , 87, 1291−1300. http://dx.doi.org/10.1645/0022-3395(2001)087[1291:CEOFMF]2.0.CO;2

D. H. Clayton D. M. Drown 2001Critical evaluation of five methods for quantifying chewing lice (Insecta: Phthiraptera)Journal of Parasitology871291−13001291−130010.1645/0022-3395(2001)087[1291:CEOFMF]2.0.CO;2

16 

Clayton, D. H. , Walther, B. A. (1997) Collection and quantification of arthropod parasites of birds. Pp. 419−440. In: Clayton D. H. and Moore J, (Eds). Host-parasite evolution: general principles and avian models. Oxford University Press, Oxford.

D. H. Clayton B. A. Walther 1997Collection and quantification of arthropod parasites of birds419−440419−440 D. H. Clayton J Moore Host-parasite evolution: general principles and avian modelsOxford University PressOxford

17 

Clayton, D. H. , Adams, R. J., Bush, S. E. (2008) Phthiraptera, the chewing lice. Pp. 515−525. In: Atkinson, C.T., Thomas, N.J. and Hunter, D.B. (Eds). Parasitic diseases of wild birds. Wiley-Blackwell.

D. H. Clayton R. J. Adams S. E. Bush 2008Phthiraptera, the chewing lice515−525515−525 C.T. Atkinson N.J. Thomas D.B. Hunter Parasitic diseases of wild birdsWiley-Blackwell

18 

Collinge, S. K. (2009) Ecology of fragmented landscapes. The Johns Hopkins University Press. Baltimore.

S. K. Collinge 2009Ecology of fragmented landscapesThe Johns Hopkins University PressBaltimore

19 

Dabert, J., Ehrnsberger, R., Dabert, M. (2008) Glaucalges tytonis sp. n. (Analgoidea, Xolalgidae) from the barn owl Tyto alba (Strigiformes, Tytonidae): compiling morphology with DNA barcode data for taxon descriptions in mites (Acari). Zootaxa, 1719, 41−52. DOI: 10.5281/zenodo.181058

J. Dabert R. Ehrnsberger M. Dabert 2008Glaucalges tytonis sp. n. (Analgoidea, Xolalgidae) from the barn owl Tyto alba (Strigiformes, Tytonidae): compiling morphology with DNA barcode data for taxon descriptions in mites (Acari)Zootaxa171941−5241−5210.5281/zenodo.181058

20 

Dawson, R. D., Bortolotii, G. R. (1997) Ecology of parasitism of nestling American kestrels by Carnus hemapterus (Diptera: Carnidae). Canadian Journal of Zoology , 75, 2021−2026.

R. D. Dawson G. R. Bortolotii 1997Ecology of parasitism of nestling American kestrels by Carnus hemapterus (Diptera: Carnidae)Canadian Journal of Zoology752021−20262021−2026

21 

DeLoach, J. R., DeVaney, J. A. (1981) Northern fowl mite, Ornithonyssus sylviarum (Acari: Macronyssidae), ingests large quantities of blood from White Leghorn hens. Journal of Medical Entomology, 18, 374−377.

J. R. DeLoach J. A. DeVaney 1981Northern fowl mite, Ornithonyssus sylviarum (Acari: Macronyssidae), ingests large quantities of blood from White Leghorn hensJournal of Medical Entomology18374−377374−377

22 

Durden, L. A., Musser, G. G. (1994) The mammalian hosts of the sucking lice (Anoplura) of the word: a host-parasite list. Bulletin of the Society for Vector Ecology, 19, 130−168.

L. A. Durden G. G. Musser 1994The mammalian hosts of the sucking lice (Anoplura) of the word: a host-parasite listBulletin of the Society for Vector Ecology19130−168130−168

23 

Emerson, C. K. (1961) Three new species of Mallophaga from the Great Horned Owl. Proceedings for the Biological Society of Washington, 74, 187−192.

C. K. Emerson 1961Three new species of Mallophaga from the Great Horned OwlProceedings for the Biological Society of Washington74187−192187−192

24 

Ewing, H. E., Fox, I. (1943) The fleas of North America. United States Department of Agriculture. Washington, D.C. 143 pp.

H. E. Ewing I. Fox 1943The fleas of North AmericaUnited States Department of AgricultureWashington, D.C.143

25 

Farajollahi, A., Crans, W. J., Nickerson, D., Bryant, P., Wolf, B., Glaser, A., Andreadis, T. G. (2005) Detection of West Nile virus RNA from the louse fly Icosta americana (Diptera: Hippoboscidae). Journal of the American Mosquito Control Association, 21, 474−476. http://dx.doi.org/10.2987/8756-971X(2006)21[474:DOWNVR]2.0.CO;2

A. Farajollahi W. J. Crans D. Nickerson P. Bryant B. Wolf A. Glaser T. G. Andreadis 2005Detection of West Nile virus RNA from the louse fly Icosta americana (Diptera: Hippoboscidae)Journal of the American Mosquito Control Association21474−476474−47610.2987/8756-971X(2006)21[474:DOWNVR]2.0.CO;2

26 

Galloway, T. D., Proctor, H. C., Mironov, S. V. (2014) Chewing Lice (Insecta: Phthiraptera: Amblycera, Ischnocera) and Feather Mites (Acari: Astigmatina: Analgoidea, Pterolichoidea): Ectosymbionts of Grassland Birds in Canada. Pp. 139−188. In: Cárcamo, H.A., Giberson, D.J., (Eds). Arthropods of Canadian Grasslands: Biodiversity and Systematics Part 1. Biological Survey of Canada. http://dx.doi.org/10.3752/9780968932162.ch5

T. D. Galloway H. C. Proctor S. V. Mironov 2014Chewing Lice (Insecta: Phthiraptera: Amblycera, Ischnocera) and Feather Mites (Acari: Astigmatina: Analgoidea, Pterolichoidea): Ectosymbionts of Grassland Birds in Canada139−188139−188 H.A. Cárcamo D.J. Giberson Arthropods of Canadian Grasslands: Biodiversity and SystematicsPart 1. Biological Survey of Canada10.3752/9780968932162.ch5

27 

González-Acuña, D., Muñoz, R., Cicchino, A., Figueroa, R. (2006) Lice of Chilean owls: A first description. Journal of Raptor Research , 40, 301−302. https://doi.org/10.3356/0892-1016(2006)40[301:LOCOAF]2.0.CO;2

D. González-Acuña R. Muñoz A. Cicchino R. Figueroa 2006Lice of Chilean owls: A first descriptionJournal of Raptor Research40301−302301−30210.3356/0892-1016(2006)40[301:LOCOAF]2.0.CO;2

28 

Greer, A. L., Collins, J. P. (2008) Habitat fragmentation as a result of biotic and abiotic factors controls pathogen transmission throughout a host population. Journal of Animal Ecology, 77, 364−369. doi: 10.1111/j.1365-2656.2007.01330.x

A. L. Greer J. P. Collins 2008Habitat fragmentation as a result of biotic and abiotic factors controls pathogen transmission throughout a host populationJournal of Animal Ecology77364−369364−36910.1111/j.1365-2656.2007.01330.x

29 

Grubb, T. G. (1986) Haematosiphon inodorus (Hemiptera: Cimicidae) in a Nest of a Bald Eagle (Haliaeetus leucocephalus) in Arizona. Journal of Wildlife Diseases , 22, 125−127.

T. G. Grubb 1986Haematosiphon inodorus (Hemiptera: Cimicidae) in a Nest of a Bald Eagle (Haliaeetus leucocephalus) in ArizonaJournal of Wildlife Diseases22125−127125−127

30 

Guzmán-Cornejo, C., García M. L., Rivas, G., Mendoza, B., Osorio, D., Montiel, G. P. (2012) Manual de prácticas de metazoarios parásitos de vertebrados. Universidad Nacional Autónoma de México, México. 141 p.

C. Guzmán-Cornejo M. L. García G. Rivas B. Mendoza D. Osorio G. P. Montiel 2012Manual de prácticas de metazoarios parásitos de vertebradosUniversidad Nacional Autónoma de MéxicoMéxico141

31 

Houston, C. S. , Smith, D. G. , Rohner, C. (1998) Great Horned Owl (Bubo virginianus). Birds North America, 372, 1−28.

C. S. Houston D. G. Smith C. Rohner 1998Great Horned Owl (Bubo virginianus)Birds North America3721−281−28

32 

Howell, S. N. G., Webb S. (1995) A guide to the birds of Mexico and northern Central America. Oxford Univ. Press, New York.

S. N. G. Howell S. Webb 1995A guide to the birds of Mexico and northern Central AmericaOxford Univ. PressNew York

33 

Hudson, P. J., Dobson A. P., Lafferty, K. D. (2006) Is a healthy ecosystem one that is rich in parasites?. Trens in Ecology and Evolution, 21, 381−385. doi:10.1016/j.tree.2006.04.007

P. J. Hudson A. P. Dobson K. D. Lafferty 2006Is a healthy ecosystem one that is rich in parasites?Trens in Ecology and Evolution21381−385381−38510.1016/j.tree.2006.04.007

34 

Hunter, J. E., Gutiérrez, R. J., Franklin, A. B., Olson, D. (1994) Ectoparasites of the Spotted Owl. Journal Raptor Research, 28, 232−235.

J. E. Hunter R. J. Gutiérrez A. B. Franklin D. Olson 1994Ectoparasites of the Spotted Owl.Journal Raptor Research28232−235232−235

35 

Hunter, D. B., Rohner, C. , Currie, D. C. (1997) Mortality in fledgling Great Horned Owls from Black Fly hematophaga and Leucocytozoonosis. Journal Wildlife Disease, 33, 486−491.

D. B. Hunter C. Rohner D. C. Currie 1997Mortality in fledgling Great Horned Owls from Black Fly hematophaga and LeucocytozoonosisJournal Wildlife Disease33486−491486−491

36 

Jellison, W. L. (1939) Sylvatic Plague: Studies of Predatory and Scavenger Birds in Relation to Its Epidemiology. Public Health Reports (1896-1970), 54, 792−798.

W. L. Jellison 1939Sylvatic Plague: Studies of Predatory and Scavenger Birds in Relation to Its EpidemiologyPublic Health Reports54792−798792−798

37 

Jephcott, T. G., Sime-Ngando T., Gleason F. H., Macarthur D. J. (2016) Host- parasite interactions in food webs: diversity, stability, and coevolution. Food Webs, 6, 1−8. http://dx.doi.org/10.1016/j.fooweb.2015.12.001

T. G. Jephcott T. Sime-Ngando F. H. Gleason D. J. Macarthur 2016Host- parasite interactions in food webs: diversity, stability, and coevolutionFood Webs61−81−810.1016/j.fooweb.2015.12.001

38 

Jiménez, B., Rodríguez-Estrella, R., Merino, R., Gómez, G., Rivera, L., González, M. J., Abad, E., Rivera, J. (2005) Results and evaluation of the first study of organochlorine contaminants (PCDDs, PCDFs, PCBs and DDTs), heavy metals and metalloids in birds from Baja California, México. Environmental Pollution, 133, 139−146. https://doi.org/10.1016/j.envpol.2004.05.014

B. Jiménez R. Rodríguez-Estrella R. Merino G. Gómez L. Rivera M. J. González E. Abad J. Rivera 2005Results and evaluation of the first study of organochlorine contaminants (PCDDs, PCDFs, PCBs and DDTs), heavy metals and metalloids in birds from Baja California, MéxicoEnvironmental Pollution13310.1016/j.envpol.2004.05.014

39 

Keesing, F., Belden, L. K., Daszak, P., Dobson, A., Harvell, C. D., Holt, R. D., Hudson, P., Jolles, A., Jones, K. E., Mitchell, C. E., Myers, S. S., Bogich, T., Ostfeld, R. S. (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468, 647−652. doi:10.1038/nature09575

F. Keesing L. K. Belden P. Daszak A. Dobson C. D. Harvell R. D. Holt P. Hudson A. Jolles K. E. Jones C. E. Mitchell S. S. Myers T. Bogich R. S. Ostfeld 2010Impacts of biodiversity on the emergence and transmission of infectious diseasesNature468647−652647−65210.1038/nature09575

40 

Kellogg, V. L., Chapman, B. L. (1902) Mallophaga from birds of the Hawaiian Islands. Journal of New York Entomology Society, X, 155−169.

V. L. Kellogg B. L. Chapman 1902Mallophaga from birds of the Hawaiian IslandsJournal of New York Entomology Society155−169155−169

41 

Kirkpratrick, C. E., Colvin, B. A. (1989) Ectoparasitie fly Carnus hemapterus (Diptera: Carnidae) in a nesting population of common Barn-owls (Strigiformes: Tytonidae). Journal of Medical Entomology , 26, 109−112.

C. E. Kirkpratrick B. A. Colvin 1989Ectoparasitie fly Carnus hemapterus (Diptera: Carnidae) in a nesting population of common Barn-owls (Strigiformes: Tytonidae)Journal of Medical Entomology26109−112109−112

42 

Lewis, R. E. (2000) A taxonomic review of the North American genus Orchopeas Jordan, 1933 (Siphonaptera: Ceratophyllidae: Ceratophyllinae). Journal of Vector Ecology, 25, 164−187.

R. E. Lewis 2000A taxonomic review of the North American genus Orchopeas Jordan, 1933 (Siphonaptera: Ceratophyllidae: Ceratophyllinae)Journal of Vector Ecology25164−187164−187

43 

Liébana, M. S., Santillán, M. A., Cicchino, A.C. , Sarasola, J. H., Martínez, P., Cabezas, S., Bó, M. S. (2011) Ectoparasites in free-ranging American Kestrels in Argentina: Implications for the transmission of viral diseases. Raptors Research Foundation, 45, 335−341. http://dx.doi.org/10.3356/JRR-11-26.1

M. S. Liébana M. A. Santillán A.C. Cicchino J. H. Sarasola P. Martínez S. Cabezas M. S. Bó 2011Ectoparasites in free-ranging American Kestrels in Argentina: Implications for the transmission of viral diseasesRaptors Research Foundation45335−341335−34110.3356/JRR-11-26.1

44 

Lehane, M. (2005) The biology of Blood-sucking in insects. Cambridge University Press. USA, New York. 319 pp.

M. Lehane 2005The biology of Blood-sucking in insectsCambridge University PressUSA, New York319

45 

Loye, J. E., Carroll, S. P. (1995) Birds, bugs and blood: avian parasitism and conservation. Trends in Ecology and Evolution , 10, 232−235.

J. E. Loye S. P. Carroll 1995Birds, bugs and blood: avian parasitism and conservationTrends in Ecology and Evolution10232−235232−235

46 

Lüdtke, B., Mose, I., Santiago-Alarcon, D., Fischer, M., Kalko, E. K.V., Shcaefer, H. M., Suárez-Rubio, M., Tschapka, M., Renner, S. C. (2013) Associations of forest type, parasitism and body condition of two European passerines, Fringilla coelebs and Sylvia atricapilla. Plos One, 8, 1−9. doi:10.1371/journal.pone.0081395

B. Lüdtke I. Mose D. Santiago-Alarcon M. Fischer E. K.V. Kalko H. M. Shcaefer M. Suárez-Rubio M. Tschapka S. C. Renner 2013Associations of forest type, parasitism and body condition of two European passerines, Fringilla coelebs and Sylvia atricapillaPlos One81−91−910.1371/journal.pone.0081395

47 

Maa, T. C. (1969) A revised checklist and concise host index of hippoboscidae (Diptera). Pacific Insects Monograph, 20, 261−299.

T. C. Maa 1969A revised checklist and concise host index of hippoboscidae (Diptera)Pacific Insects Monograph20261−299261−299

48 

Magalhães, R. B., Diniz, P., Macedo, R. H. (2014) Plumage coverage is related to body condition and ectoparasitism in Blue-black Grassquits. The Wilson Journal of Ornithology, 126, 581−584. https://doi.org/10.1676/13-197.1

R. B. Magalhães P. Diniz R. H. Macedo 2014Plumage coverage is related to body condition and ectoparasitism in Blue-black GrassquitsThe Wilson Journal of Ornithology126581−584581−58410.1676/13-197.1

49 

Malcomson, R. O. (1960) Mallophaga from birds of North America. Wilson Bulletin, 72, 182−197.

R. O. Malcomson 1960Mallophaga from birds of North AmericaWilson Bulletin72182−197182−197

50 

McCulloch, J. B., Owen, J. P. (2012) Arrhenotoky and oedipal mating in the northern fowl mite (Ornithonyssus sylviarum) (Acari: Gamasida: Macronyssidae). Parasites & Vectors, 5, 281. doi:10.1186/1756-3305-5-281

J. B. McCulloch J. P. Owen 2012Arrhenotoky and oedipal mating in the northern fowl mite (Ornithonyssus sylviarum) (Acari: Gamasida: Macronyssidae)Parasites & Vectors528110.1186/1756-3305-5-281

51 

Merino, S., Potti, J. (1995) Mites and blowflies decrease growth and survival in nestling pied flycatchers. Oikos, 73, 95−103.

S. Merino J. Potti 1995Mites and blowflies decrease growth and survival in nestling pied flycatchersOikos7395−10395−103

52 

Miller, D. S., Taton-Allen, G. F., Campbell, T. W. (2004) Knemidokoptes in a Swainson´s Hawk, Buteo swainsoni. Journal of Zoo and Wildlife Medicine, 35, 400−402. https://doi.org/10.1638/03-043

D. S. Miller G. F. Taton-Allen T. W. Campbell 2004Knemidokoptes in a Swainson´s Hawk, Buteo swainsoniJournal of Zoo and Wildlife Medicine35400−402400−40210.1638/03-043

53 

Santos, M. A., Chong, O. L., Miller, J. M. (2014) Hippoboscidae (Insecta: Diptera). Ectoparasitos en aves de Panamá, claves de identificación, hospederos y distribución. Scientia, 24, 51−68.

M. A. Santos O. L. Chong J. M. Miller 2014Hippoboscidae (Insecta: Diptera). Ectoparasitos en aves de Panamá, claves de identificación, hospederos y distribuciónScientia2451−6851−68

54 

Morishita, T. Y., Fullerton, A. T., Lowenstein, L. J., Gardner, I. A., Brooks, D. L. (1998) Morbidity and mortality in free-living raptorial birds of northern California: a retrospective study, 1983-1994. Journal of Avian Medicine and Surgery, 12, 78-81.

T. Y. Morishita A. T. Fullerton L. J. Lowenstein I. A. Gardner D. L. Brooks 1998Morbidity and mortality in free-living raptorial birds of northern California: a retrospective study, 1983-1994Journal of Avian Medicine and Surgery127881

55 

Morishita, T. Y. , Mertins, J. W., Baker, D. G., Monahan, C. M., Brooks, D. L. (2001) Occurrence and species of lice on free-living and captive raptors in California. Journal of Avian Medicine and Surgery , 15, 288−292. http://dx.doi.org/10.1647/1082-6742(2001)015[0288:OASOLO]2.0.CO;2

T. Y. Morishita J. W. Mertins D. G. Baker C. M. Monahan D. L. Brooks 2001Occurrence and species of lice on free-living and captive raptors in CaliforniaJournal of Avian Medicine and Surgery15288−292288−29210.1647/1082-6742(2001)015[0288:OASOLO]2.0.CO;2

56 

Moyer, R. B., Drown, M. D., Clayton, D. H. (2002) Low humidity reduces ectoparasites pressure: implications for host life history evolution. Oikos , 97, 223−228.

R. B. Moyer M. D. Drown D. H. Clayton 2002Low humidity reduces ectoparasites pressure: implications for host life history evolutionOikos97223−228223−228

57 

Munguia-Vega, A., Rodríguez-Estrella, R. , Shaw, W. W., Culver, M. (2012) Localized extinction of an arboreal desert lizard caused by habitat fragmentation. Biological Conservation, 157, 11−20. http://dx.doi.org/10.1016/j.biocon.2012.06.026

A. Munguia-Vega R. Rodríguez-Estrella W. W. Shaw M. Culver 2012Localized extinction of an arboreal desert lizard caused by habitat fragmentationBiological Conservation15711−2011−2010.1016/j.biocon.2012.06.026

58 

Murillo A. C., Mullens, B. A. (2017) A review of the biology, ecology, and control of the northern fowl mite, Ornithonysus sylviarum (Acari: Macronyssidae). Veterinary of Parasitology, 246, 30−17. http://dx.doi.org/10.1016/j.vetpar.2017.09.002

A. C. Murillo B. A. Mullens 2017A review of the biology, ecology, and control of the northern fowl mite, Ornithonysus sylviarum (Acari: Macronyssidae)Veterinary of Parasitology24630−1730−1710.1016/j.vetpar.2017.09.002

59 

Oliveira, B. J. Santos, T., Vaughan, C., Santiago, H. (2011) External parasites of raptors (Falconiformes and Strigiformes): identification in an ex situ population from Mexico. Revista de Biología Tropical, 59, 1257−1264.

B. J. Oliveira T. Santos C. Vaughan H. Santiago 2011External parasites of raptors (Falconiformes and Strigiformes): identification in an ex situ population from MexicoRevista de Biología Tropical591257−12641257−1264

60 

Palma, L. R. (1978) Slide-mounting of Lice: a detailed description of the Canada balsam technique. New Zealand Entomologist, 6, 432−436.

L. R. Palma 1978Slide-mounting of Lice: a detailed description of the Canada balsam techniqueNew Zealand Entomologist6432−436432−436

61 

Patz, J. A., Daszak, P. , Tabor, G. M., Aguirre, A. A., Pearl, M., Epstein, J., Wolfe, N. D., Kilpatrick, A. M., Foufopoulos, J., Molyneux, D., Bradley, D. J. (2004) Unhealthy landscapes: Policy recommendations on land use change and infectious disease emergence. Environmental Health Perspectives, 112, 1092−1098. doi:10.1289/ehp.6877

J. A. Patz P. Daszak G. M. Tabor A. A. Aguirre M. Pearl J. Epstein N. D. Wolfe A. M. Kilpatrick J. Foufopoulos D. Molyneux D. J. Bradley 2004Unhealthy landscapes: Policy recommendations on land use change and infectious disease emergenceEnvironmental Health Perspectives1121092−10981092−109810.1289/ehp.6877

62 

Pérez, J. M., Ruiz-Martinez, I., Cooper, E. J. (1996) Occurrence of chewing lice on Spanish raptors. Ardeola, 43, 129−138.

J. M. Pérez I. Ruiz-Martinez E. J. Cooper 1996Occurrence of chewing lice on Spanish raptorsArdeola43129−138129−138

63 

Philips, J. R. (2000) A review and checklist of the parasitic mites (Acarina) of the falconiformes and Strigiformes. Raptor Research Foundation, 34, 210−231.

J. R. Philips 2000A review and checklist of the parasitic mites (Acarina) of the falconiformes and StrigiformesRaptor Research Foundation34210−231210−231

64 

Philips, J. R. (2007) Pathology, Ectoparasites. Pp. 311−317. In: D. M. Bird, Bildstein, K. L. (Eds). Raptor management techniques manual. Hancock House Publishers, Blaine, Washington, U.S.A.

J. R. Philips 2007Pathology, Ectoparasites311−317311−317 D. M. Bird K. L. Bildstein Raptor management techniques manualHancock House PublishersBlaine, Washington, U.S.A.

65 

Phillips, J. R., Dindal, D. L. (1977) Raptor nests as a habitat for invertebrates: A review. Raptor Research Foundation , 11, 87−96.

J. R. Phillips D. L. Dindal 1977Raptor nests as a habitat for invertebrates: A reviewRaptor Research Foundation1187−9687−96

66 

Pfaffenberger, G. S., Rosero, J. F. (1984) Mallophaga from five raptor species in Eastern New Mexico. Journal of Wildlife Diseases , 20, 65−66.

G. S. Pfaffenberger J. F. Rosero 1984Mallophaga from five raptor species in Eastern New MexicoJournal of Wildlife Diseases2065−6665−66

67 

Pfaffenberger, G. S. , Wilson, C. (1985)− Ectoparasites of vertebrates cohabiting Black-tailed Prairied Dog towns in Eastern New Mexico. Journal of Wildlife Diseases , 21, 69−72.

G. S. Pfaffenberger C. Wilson 1985Ectoparasites of vertebrates cohabiting Black-tailed Prairied Dog towns in Eastern New MexicoJournal of Wildlife Diseases2169−7269−72

68 

Price, D. R., Beer, J. R. (1963a) The species of Colpocephalum (Mallophaga: Menoponidae) known to occur on the Strigiformes. Journal of the Kansas Entomological Society, 36, 58−64.

D. R. Price J. R. Beer 1963The species of Colpocephalum (Mallophaga: Menoponidae) known to occur on the StrigiformesJournal of the Kansas Entomological Society3658−6458−64

69 

Price, D. R. , Beer, J. R. (1963b) The Kurodaia (Mallophaga: Menoponidae) parasitic on the Strigiformes, key to the species of the genus. Annals of the Entomological Society of America, 56, 849−857.

D. R. Price J. R. Beer 1963The Kurodaia (Mallophaga: Menoponidae) parasitic on the Strigiformes, key to the species of the genusAnnals of the Entomological Society of America56849−857849−857

70 

Price, D. R. , Hellenthal, R. A. (1988) A new species of Geomydoecus (Mallophaga: Trichodectidae) from Pappogeomys (Rodentia: Geomyidae) pocket gophers in Jalisco, México. Journal of Entomological Science, 23, 212−215.

D. R. Price R. A. Hellenthal 1988A new species of Geomydoecus (Mallophaga: Trichodectidae) from Pappogeomys (Rodentia: Geomyidae) pocket gophers in Jalisco, MéxicoJournal of Entomological Science23212−215212−215

71 

Price, R. D., Hellenthal, R. A. , Palma, R. L., Johnson, K. P., Clayton, D. H. (2003) The chewing lice: world checklist and biological overview. Illinois Natural History Survey Special Publication, 24, 501 pp.

R. D. Price R. A. Hellenthal R. L. Palma K. P. Johnson D. H. Clayton 2003The chewing lice: world checklist and biological overviewIllinois Natural History Survey Special Publication24501

72 

Proctor, H. C. (2003) Feather mites (Acari: Astigmata): ecology, behavior, and evolution. Annual Review of Entomology, 48, 185−209. doi: 10.1146/annurev.ento.48.091801.112725

H. C. Proctor 2003Feather mites (Acari: Astigmata): ecology, behavior, and evolutionAnnual Review of Entomology48185−209185−20910.1146/annurev.ento.48.091801.112725

73 

Proctor, H., Owens, I. (2000) Mites and birds: diversity, parasitism and coevolution. Trends in Ecology and Evolution , 15, 358−364. doi: 10.1016/S0169-5347(00)01924-8

H. Proctor I. Owens 2000Mites and birds: diversity, parasitism and coevolutionTrends in Ecology and Evolution15358−364358−36410.1016/S0169-5347(00)01924-8

74 

Proudfoot, G. A., Teel, P. D., Mohr, R. M. (2006) Ferruginous Pygmy-Owl (Glaudicium brasilianum) and Eastern Screech-Owl (Megascopes asio): New hosts for Philornis mimicola (Diptera: Miscidae) and Ornithodoros concanensis (Acari: Argasidae). Journal of Wildlife Diseases , 42, 873−876. doi: 10.7589/0090-3558-42.4.873

G. A. Proudfoot P. D. Teel R. M. Mohr 2006Ferruginous Pygmy-Owl (Glaudicium brasilianum) and Eastern Screech-Owl (Megascopes asio): New hosts for Philornis mimicola (Diptera: Miscidae) and Ornithodoros concanensis (Acari: Argasidae)Journal of Wildlife Diseases42873−876873−87610.7589/0090-3558-42.4.873

75 

Rak, H., Anwar, M., Niak, A. (1975) The species of Mallophaga in wild birds in Iran. Buletin De La Societe De Pathologie Exotique Et De Ses Filiales, 68, 588−591.

H. Rak M. Anwar A. Niak 1975The species of Mallophaga in wild birds in IranBuletin De La Societe De Pathologie Exotique Et De Ses Filiales68588−591588−591

76 

Rebman, J. P., Roberts, N. C. (2012) Baja California plant field guide. San Diego Natural History Museum. USA, 451 pp.

J. P. Rebman N. C. Roberts 2012Baja California plant field guideSan Diego Natural History MuseumUSA451

77 

Rohner, C. , Krebs, C., Hunter, B., Currie, D. (2000) Roost Site Selection of Great Horned Owls in relation to black fly activity: an anti-parasite behavior. Condor, 102, 950−955.

C. Rohner C. Krebs B. Hunter D. Currie 2000Roost Site Selection of Great Horned Owls in relation to black fly activity: an anti-parasite behaviorCondor102950−955950−955

78 

Rothschild, M., Clay T. (1957) Fleas, flukes and cuckoos. New York, Philosophical Library.

M. Rothschild T. Clay 1957Fleas, flukes and cuckoosNew YorkPhilosophical Library

79 

Schulz, T. A., Stewart, J. S., Fowler, M. E. (1989) Knemidokoptes mutans (Acari: Knemidocoptidae) in a Great-horned Owl (Bubo virginianus). Journal of Wildlife Diseases , 25, 430−432.

T. A. Schulz J. S. Stewart M. E. Fowler 1989Knemidokoptes mutans (Acari: Knemidocoptidae) in a Great-horned Owl (Bubo virginianus)Journal of Wildlife Diseases25430−432430−432

80 

Scott, J. D., Foley, J. E., Young, M. R., Durden, L. A. (2017) First report of a blacklegged tick, Ixodes scapularis say (Acari: Ixodidae), parasitizing a raptor in Canada. Systematic and Applied Acarology, 22, 208−216. doi: 10.11158/saa.22.2.5

J. D. Scott J. E. Foley M. R. Young L. A. Durden 2017First report of a blacklegged tick, Ixodes scapularis say (Acari: Ixodidae), parasitizing a raptor in CanadaSystematic and Applied Acarology22208−216208−21610.11158/saa.22.2.5

81 

Skoruppa, M. K., Pearce, B., Woodin, M. C., Hickman, G. (2006) Ectoparasites of Burrowing owls (Athene cunicularia hypugae) wintering in southern Texas. Texas Journal of Science, 58, 73−78.

M. K. Skoruppa B. Pearce M. C. Woodin G. Hickman 2006Ectoparasites of Burrowing owls (Athene cunicularia hypugae) wintering in southern TexasTexas Journal of Science5873−7873−78

82 

Streby, H. M., Peterson, S. M., Kapfer, P. M. (2009) Fledging success is a poor indicator of the effects of Bird Blow flies on ovenbird survival. Condor , 111, 193−197. doi: 10.1525/cond.2009.080095

H. M. Streby S. M. Peterson P. M. Kapfer 2009Fledging success is a poor indicator of the effects of Bird Blow flies on ovenbird survivalCondor111193−197193−19710.1525/cond.2009.080095

83 

Tella, J. L., Rodríguez-Estrella R. , Blanco G. (2000) Louse flies on birds of Baja California. Journal of Wildlife Diseases , 36, 154−156. doi: 10.7589/0090-3558-36.1.154

J. L. Tella R. Rodríguez-Estrella G. Blanco 2000Louse flies on birds of Baja CaliforniaJournal of Wildlife Diseases36154−156154−15610.7589/0090-3558-36.1.154

84 

Usinger, R. L. (1966) Monograph of Cimicidae (Hemiptera-Heteroptera). Entomological Society of America, 1, 572 pp.

R. L. Usinger 1966Monograph of Cimicidae (Hemiptera-Heteroptera)Entomological Society of America1572

85 

Valiente- Moro C., Chauve C., Zenner L. (2005) Vectorial role of some Dermanyssoid mites (Acari, Mesostigmata, Dermanyssoidea). Parasite, 12, 99-109.

C. Valiente- Moro C. Chauve L. Zenner 2005Vectorial role of some Dermanyssoid mites (Acari, Mesostigmata, Dermanyssoidea)Parasite1299109

86 

Webstern, K. N., Hill, N. J., Burnet, L., Deane, E. M. (2014) Ectoparasite infestation patterns, haematology and serum biochemistry of urban-dwelling common brushtail possums. Wildlife Biology, 20, 2006−2016. doi: 10.2981/wlb.00027

K. N. Webstern N. J. Hill L. Burnet E. M. Deane 2014Ectoparasite infestation patterns, haematology and serum biochemistry of urban-dwelling common brushtail possumsWildlife Biology202006−201610.2981/wlb.00027

87 

Wimberger, P. H. (1984) The use of green plant material in bird nests to avoid ectoparasites. Auk, 101, 615−618.

P. H. Wimberger 1984The use of green plant material in bird nests to avoid ectoparasitesAuk101615−618615−618

88 

Whiteman, N. K., Parker P. G. (2004a) Body condition and parasite load predict territory ownership in the Galápagos Hawk. Condor , 106, 915−921.

N. K. Whiteman P. G. Parker 2004Body condition and parasite load predict territory ownership in the Galápagos HawkCondor106915−921915−921

89 

Whiteman, N. K. , Parker P. G. (2004b) Effects of host sociality on ectoparasite population biology. Journal of Parasitology , 90, 939−947.

N. K. Whiteman P. G. Parker 2004Effects of host sociality on ectoparasite population biologyJournal of Parasitology90939−947939−947

90 

Wiggins, I. L., (1980) Flora of Baja California. Stanford University Press, Stanford CA. USA. 1025pp.

I. L. Wiggins 1980Flora of Baja CaliforniaStanford University PressStanford CA. USA1025

91 

Wilson, N., Oliver G. V. Jr. (1978). Noteworthy records of two ectoparasites (Cimicidae and Hippoboscidae) from the Turkey Vulture in Texas. The Southwestern Naturalist, 23, 305−307.

N. Wilson G. V. Jr. Oliver 1978Noteworthy records of two ectoparasites (Cimicidae and Hippoboscidae) from the Turkey Vulture in TexasThe Southwestern Naturalist23305−307305−307

92 

Wood, M. D. (2010) Hippoboscidae (Louse flies), pp. 1241−1248. In: Brown B.V., Borkent A, Cumming J. M., Wood D. M, Woodley N. E., Zumbado M.A. (Eds). Manual of central American Diptera: Volume 2. NRC Research Press, Ottawa.

M. D. Wood 2010Hippoboscidae (Louse flies)1241−12481241−1248 B.V. Brown A Borkent J. M. Cumming D. M Wood N. E. Woodley M.A. Zumbado Manual of central American Diptera: Volume 2NRC Research PressOttawa

93 

Young, K. E., Franklin A. B., Ward J. P. (1993) Infestation of Northern Spotted Owls by hippoboscid (Diptera) flies in northwestern California. Journal of Wildlife Diseases , 29, 278−283.

K. E. Young A. B. Franklin J. P. Ward 1993Infestation of Northern Spotted Owls by hippoboscid (Diptera) flies in northwestern CaliforniaJournal of Wildlife Diseases29278−283278−283

Notes

[2] Editor responsable: Sergio Ibáñez Bernal



This display is generated from NISO JATS XML with jats-html.xsl. The XSLT engine is libxslt.

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2018 ACTA ZOOLÓGICA MEXICANA (N.S.)

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Acta Zoológica Mexicana (nueva serie), 2019, Vol. 35, es una publicación electrónica continua de acceso abierto, editada por el Instituto de Ecología, A.C. (INECOL), Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Ver. C.P. 91070, Tel. (228) 842-1800, extensión 4112 http://azm.ojs.inecol.mx/index.php/azm. Editor responsable: Sergio Ibáñez-Bernal, sergio.ibanez@inecol.mx. Reservas de Derechos al Uso Exclusivo No. 04-2016-062312173100-203, versión on-line ISSN 2448-8445, [antes también impresa ISSN 0065-1737], con registros otorgados por el Instituto Nacional del Derecho de Autor. Responsable de la última actualización de este volumen, Sergio Ibáñez-Bernal, Carretera antigua a Coatepec, 351, Col. El Haya, Xalapa, Ver., C.P. 91070. Fecha de la última modificación: 18 de enero de 2019.